41 research outputs found

    Emotionale Kommunikation mittels chemischer Signale

    Get PDF

    Fancy Citrus, Feel Good: Positive Judgment of Citrus Odor, but Not the Odor Itself, Is Associated with Elevated Mood during Experienced Helplessness

    Get PDF
    Aromatherapy claims that citrus essential oils exert mood lifting effects. Controlled studies, however, have yielded inconsistent results. Notably, studies so far did not control for odor pleasantness, although pleasantness is a critical determinant of emotional responses to odors. This study investigates mood lifting effects of d-(+)-limonene, the most prominent substance in citrus essential oils, with respect to odor quality judgments.Negative mood was induced within 78 participants using a helplessness paradigm (unsolvable social discrimination task). During this task, participants were continuously (mean duration: 19.5 min) exposed to d-(+)-limonene (n = 25), vanillin (n = 26), or diethyl phthalate (n = 27). Participants described their mood (Self-Assessment-Manikin, basic emotion ratings) and judged the odors’ quality (intensity, pleasantness, unpleasantness, familiarity) prior to and following the helplessness induction. The participants were in a less positive mood after the helplessness induction (p < .001), irrespective of the odor condition. Still, the more pleasant the participants judged the odors, the less effective the helplessness induction was in reducing happiness (p = .019).The results show no odor specific mood lifting effect of d-(+)-limonene, but indicate a positive effect of odor pleasantness on mood. The study highlights the necessity to evaluate odor judgments in aromatherapy research

    Intensified Neuronal Investment in the Processing of Chemosensory Anxiety Signals in Non-Socially Anxious and Socially Anxious Individuals

    Get PDF
    BACKGROUND: The ability to communicate anxiety through chemosensory signals has been documented in humans by behavioral, perceptual and brain imaging studies. Here, we investigate in a time-sensitive manner how chemosensory anxiety signals, donated by humans awaiting an academic examination, are processed by the human brain, by analyzing chemosensory event-related potentials (CSERPs, 64-channel recording with current source density analysis). METHODOLOGY/PRINCIPAL FINDINGS: In the first study cerebral stimulus processing was recorded from 28 non-socially anxious participants and in the second study from 16 socially anxious individuals. Each individual participated in two sessions, smelling sweat samples donated from either female or male donors (88 sessions; balanced session order). Most of the participants of both studies were unable to detect the stimuli olfactorily. In non-socially anxious females, CSERPs demonstrate an increased magnitude of the P3 component in response to chemosensory anxiety signals. The source of this P3 activity was allocated to medial frontal brain areas. In socially anxious females chemosensory anxiety signals require more neuronal resources during early pre-attentive stimulus processing (N1). The neocortical sources of this activity were located within medial and lateral frontal brain areas. In general, the event-related neuronal brain activity in males was much weaker than in females. However, socially anxious males processed chemosensory anxiety signals earlier (N1 latency) than the control stimuli collected during an ergometer training. CONCLUSIONS/SIGNIFICANCE: It is concluded that the processing of chemosensory anxiety signals requires enhanced neuronal energy. Socially anxious individuals show an early processing bias towards social fear signals, resulting in a repression of late attentional stimulus processing

    Empathic Cognitions Affected by Undetectable Social Chemosignals: An EEG Study on Visually Evoked Empathy for Pain in an Auditory and Chemosensory Context

    Get PDF
    Reduction of mu activity within the EEG is an indicator of cognitive empathy and can be generated in response to visual depictions of others in pain. The current study tested whether this brain response can be modulated by an auditory and a chemosensory context. Participants observed pictures of painful and non-painful actions while pain associated and neutral exclamations were presented (Study 1, N = 30) or while chemosensory stimuli were presented via a constant flow olfactometer (Study 2, N = 22). Chemosensory stimuli were sampled on cotton pads while donors participated in a simulated job interview (stress condition) or cycled on a stationary bike (sport condition). Pure cotton was used as a control. The social chemosignals could not be detected as odors. Activity within the 8–13 Hz band at electrodes C3, C4 (mu activity) and electrodes O1, O2 (alpha-activity) was calculated using Fast-Fourier-Transformation (FFT). As expected, suppression of power in the 8–13 Hz band was stronger when painful as compared to non-painful actions were observed (Study 1, p = 0.020; Study 2, p = 0.005). In addition, as compared to the neutral auditory and chemosensory context, painful exclamations (Study 1, p = 0.039) and chemosensory stress signals (Study 2, p = 0.014) augmented mu-/alpha suppression also in response to non-painful pictures. The studies show that processing of social threat-related information is not dominated by visual information. Rather, cognitive appraisal related to empathy can be affected by painful exclamations and subthreshold chemosensory social information

    Induction of Empathy by the Smell of Anxiety

    Get PDF
    The communication of stress/anxiety between conspecifics through chemosensory signals has been documented in many vertebrates and invertebrates. Here, we investigate how chemosensory anxiety signals conveyed by the sweat of humans (N = 49) awaiting an academic examination are processed by the human brain, as compared to chemosensory control signals obtained from the same sweat donors in a sport condition. The chemosensory stimuli were pooled according to the donation condition and administered to 28 participants (14 males) synchronously to breathing via an olfactometer. The stimuli were perceived with a low intensity and accordingly only about half of the odor presentations were detected by the participants. The fMRI results (event-related design) show that chemosensory anxiety signals activate brain areas involved in the processing of social emotional stimuli (fusiform gyrus), and in the regulation of empathic feelings (insula, precuneus, cingulate cortex). In addition, neuronal activity within attentional (thalamus, dorsomedial prefrontal cortex) and emotional (cerebellum, vermis) control systems were observed. The chemosensory perception of human anxiety seems to automatically recruit empathy-related resources. Even though the participants could not attentively differentiate the chemosensory stimuli, emotional contagion seems to be effectively mediated by the olfactory system

    Processing of Body Odor Signals by the Human Brain

    Get PDF
    Brain development in mammals has been proposed to be promoted by successful adaptations to the social complexity as well as to the social and non-social chemical environment. Therefore, the communication via chemosensory signals might have been and might still be a phylogenetically ancient communication channel transmitting evolutionary significant information. In humans, the neuronal underpinnings of the processing of social chemosignals have been investigated in relation to kin recognition, mate choice, the reproductive state and emotional contagion. These studies reveal that human chemosignals are probably not processed within olfactory brain areas but through neuronal relays responsible for the processing of social information. It is concluded that the processing of human social chemosignals resembles the processing of social signals originating from other modalities, except that human social chemosignals are usually communicated without the allocation of attentional resources, that is below the threshold of consciousness. Deviances in the processing of human social chemosignals might be related to the development and maintenance of mental disorders

    Past, Present, and Future of Human Chemical Communication Research

    Get PDF
    Although chemical signaling is an essential mode of communication in most vertebrates, it has long been viewed as having negligible effects in humans. However, a growing body of evidence shows that the sense of smell affects human behavior in social contexts ranging from affiliation and parenting to disease avoidance and social threat. This article aims to (a) introduce research on human chemical communication in the historical context of the behavioral sciences; (b) provide a balanced overview of recent advances that describe individual differences in the emission of semiochemicals and the neural mechanisms underpinning their perception, that together demonstrate communicative function; and (c) propose directions for future research toward unraveling the molecular principles involved and understanding the variability in the generation, transmission, and reception of chemical signals in increasingly ecologically valid conditions. Achieving these goals will enable us to address some important societal challenges but are within reach only with the aid of genuinely interdisciplinary approaches

    Affective Sciences through the Chemical Senses

    No full text
    In people's minds, smells, flavors and affective phenomena are perceived as closely linked. But is it genuinely the case? The scientific study of this question is a rapidly expanding field, both in healthy and in clinical populations. Although still under-studied in comparison to other sensory modalities, chemical senses have proven to bring unique knowledge in the understanding of affective phenomena. In this context, this Research Topic is aimed to offer a snapshot of the present knowledge and questions raised in this field. Topics include, but are not limited to: affects elicited by odors and/or flavors in different individuals, contexts or cultures; emotional potency of odors in guiding human behavior and cognition (e.g. attention, memory formation, decisions and choices, withdrawal and approach behavior); affects communicated by body odors; affect regulation disorders and chemosensory perception. Studies on the biological underpinnings of these effects are also included
    corecore