18 research outputs found

    Development of a FLIPR Assay for the Simultaneous Identification of MrgD Agonists and Antagonists from a Single Screen

    Get PDF
    MrgD, a member of the Mas-related gene family, is expressed exclusively in small diameter IB4(+) neurons in the dorsal root ganglion. This unique expression pattern, the presence of a single copy of MrgD in rodents and humans, and the identification of a putative ligand, beta-alanine, make it an experimentally attractive therapeutic target for pain with limited likelihood of side effects. We have devised a high throughput calcium mobilization assay that enables identification of both agonists and antagonists from a single screen for MrgD. Screening of the Library of Pharmacologically Active Compounds (LOPAC) validated this assay approach, and we identified both agonists and antagonists active at micromolar concentrations in MrgD expressing but not in parental CHO-DUKX cell line. Further characterization was performed using a subset of these screening hits. Our results demonstrated that the dual agonist/antagonist assay format is feasible and likely can be extended to most GPCRs with known agonist

    Perivascular cells expressing annexin A5 define a novel mesenchymal stem cell-like population with the capacity to differentiate into multiple mesenchymal lineages

    No full text
    The annexin A5 gene (Anxa5) was recently found to be expressed in the developing and adult vascular system as well as the skeletal system. In this paper, the expression of an Anxa5-lacZ fusion gene was used to define the onset of expression in the vasculature and to characterize these Anxa5-lacZ-expressing vasculature-associated cells. After blastocyst implantation, Anxa5-lacZ-positive cells were first detected in extra-embryonic tissues and in angioblast progenitors forming the primary vascular plexus. Later, expression is highly restricted to perivascular cells in most blood vessels resembling pericytes or vascular smooth muscle cells. Viable Anxa5-lacZ(+) perivascular cells were isolated from embryos as well as adult brain meninges by specific staining with fluorescent X-gal substrates and cell-sorting. These purified lacZ(+) cells specifically express known markers of pericytes, but also markers characteristic for stem cell populations. In vitro and in vivo differentiation experiments show that this cell pool expresses early markers of chondrogenesis, is capable of forming a calcified matrix and differentiates into adipocytes. Hence, Anxa5 expression in perivascular cells from mouse defines a novel population of cells with a distinct developmental potential

    Potent Dihydroquinolinone Dopamine D2 Partial Agonist/Serotonin Reuptake Inhibitors for the Treatment of Schizophrenia

    No full text
    A dihydroquinolinone moiety was found to be a potent serotonin reuptake inhibitor pharmacophore when combined with certain amines. This fragment was coupled with selected D2 ligands to prepare a series of dual acting compounds with attractive in vitro profiles as dopamine D2 partial agonists and serotonin reuptake inhibitors. Structure-activity studies revealed that the linker plays a key role in contributing to D2 affinity, function, and SRI activity

    Tetrahydrocarbazole-Based Serotonin Reuptake Inhibitor/Dopamine D2 Partial Agonists for the Potential Treatment of Schizophrenia

    No full text
    A 5-fluoro-tetrahydrocarbazole serotonin reuptake inhibitor (SRI) building block was combined with a variety of linkers and dopamine D2 receptor ligands in an attempt to identify potent D2 partial agonist/SRI molecules for treatment of schizophrenia. This approach has the potential to treat a broader range of symptoms compared to existing therapies. Selected compounds in this series demonstrate high affinity for both targets and D2 partial agonism in cell-based and in vivo assays

    WS-50030 [7-{4-[3-(1H-Inden-3-Yl)Propyl]Piperazin-1-Yl}-1,3-Benzoxazol- 2(3H)-One]a Novel Dopamine D2 Receptor Partial Agonist/Serotonin Reuptake Inhibitor with Preclinical Antipsychotic-Like and Antidepressant-Like Activity

    No full text
    The preclinical characterization of WS-50030 [7-{4-[3-(1Hinden-3-yl)propyl] piperazin-1-yl}-1,3-benzoxazol-2(3H)-one] is described. In vitro binding and functional studies revealed highest affinity to the D2 receptor (D2L Ki, 4.0 nM) and serotonin transporter (Ki, 7.1 nM), potent D2 partial agonist activity (EC50, 0.38 nM; Emax, 30%), and complete block of the serotonin transporter (IC50, 56.4 nM). Consistent with this in vitro profile, WS-50030 (10 mg/kg/day, 21 days) significantly increased extracellular 5-HT in the rat medial prefrontal cortex, short-term WS-50030 treatment blocked apomorphine-induced climbing (ID50, 0.51 mg/kg) in a dose range that produced minimal catalepsy in mice and induced low levels of contralateral rotation in rats with unilateral substantia nigra 6-hydroxydopamine lesions (10 mg/kg i.p.), a behavioral profile similar to that of the D2 partial agonist aripiprazole. In a rat model predictive of antipsychotic-like activity, WS-50030 and aripiprazole reduced conditioned avoidance responding by 42 and 55% at 10 mg/kg, respectively. Despite aripiprazole\u27s reported lack of effect on serotonin transporters, long-term treatment with aripiprazole or WS-50030 reversed olfactory bulbectomy-induced hyperactivity at doses that did not reduce activity in sham-operated rats, indicating antidepressant-like activity for both compounds. Despite possessing serotonin reuptake inhibitory activity in addition to D2 receptor partial agonism, WS-50030 displays activity in preclinical models predictive of antipsychotic- and antidepressant efficacy similar to aripiprazole, suggesting potential efficacy of WS-50030 versus positive and negative symptoms of schizophrenia, comorbid mood symptoms, bipolar disorder, major depressive disorder, and treatment-resistant depression. Furthermore, WS-50030 provides a tool to further explore how combining these mechanisms might differentiate from other antipsychotics or antidepressants
    corecore