42 research outputs found

    Spermidine Promotes Human Hair Growth and Is a Novel Modulator of Human Epithelial Stem Cell Functions

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Circadian Clock Genes Contribute to the Regulation of Hair Follicle Cycling

    Get PDF
    Hair follicles undergo recurrent cycling of controlled growth (anagen), regression (catagen), and relative quiescence (telogen) with a defined periodicity. Taking a genomics approach to study gene expression during synchronized mouse hair follicle cycling, we discovered that, in addition to circadian fluctuation, CLOCK–regulated genes are also modulated in phase with the hair growth cycle. During telogen and early anagen, circadian clock genes are prominently expressed in the secondary hair germ, which contains precursor cells for the growing follicle. Analysis of Clock and Bmal1 mutant mice reveals a delay in anagen progression, and the secondary hair germ cells show decreased levels of phosphorylated Rb and lack mitotic cells, suggesting that circadian clock genes regulate anagen progression via their effect on the cell cycle. Consistent with a block at the G1 phase of the cell cycle, we show a significant upregulation of p21 in Bmal1 mutant skin. While circadian clock mechanisms have been implicated in a variety of diurnal biological processes, our findings indicate that circadian clock genes may be utilized to modulate the progression of non-diurnal cyclic processes

    Cyclic Expression of Lhx2 Regulates Hair Formation

    Get PDF
    Hair is important for thermoregulation, physical protection, sensory activity, seasonal camouflage, and social interactions. Hair is generated in hair follicles (HFs) and, following morphogenesis, HFs undergo cyclic phases of active growth (anagen), regression (catagen), and inactivity (telogen) throughout life. The transcriptional regulation of this process is not well understood. We show that the transcription factor Lhx2 is expressed in cells of the outer root sheath and a subpopulation of matrix cells during both morphogenesis and anagen. As the HFs enter telogen, expression becomes undetectable and reappears prior to initiation of anagen in the secondary hair germ. In contrast to previously published results, we find that Lhx2 is primarily expressed by precursor cells outside of the bulge region where the HF stem cells are located. This developmental, stage- and cell-specific expression suggests that Lhx2 regulates the generation and regeneration of hair. In support of this hypothesis, we show that Lhx2 is required for anagen progression and HF morphogenesis. Moreover, transgenic expression of Lhx2 in postnatal HFs is sufficient to induce anagen. Thus, our results reveal an alternative interpretation of Lhx2 function in HFs compared to previously published results, since Lhx2 is periodically expressed, primarily in precursor cells distinct from those in the bulge region, and is an essential positive regulator of hair formation

    Biology of human hair: Know your hair to control it

    Get PDF
    Hair can be engineered at different levels—its structure and surface—through modification of its constituent molecules, in particular proteins, but also the hair follicle (HF) can be genetically altered, in particular with the advent of siRNA-based applications. General aspects of hair biology are reviewed, as well as the most recent contributions to understanding hair pigmentation and the regulation of hair development. Focus will also be placed on the techniques developed specifically for delivering compounds of varying chemical nature to the HF, indicating methods for genetic/biochemical modulation of HF components for the treatment of hair diseases. Finally, hair fiber structure and chemical characteristics will be discussed as targets for keratin surface functionalization

    Honey, a Gift from Nature to Health and Beauty: A Review

    Get PDF
    Benefits of honey are contributed by the composition of its elements such as glucose, fructose, glucose oxidase, vitamins and phenolic compounds. For health, honey can be used to treat wounds due to the antibacterial activity conferred by the hydrogen peroxide produced by glucose oxidase in honey. Anti-inflammatory, anti-oxidant, deodorizing and tissue regeneration activities in honey also help in the wound healing process. It can also be an alternative sweetener for diabetic patients to ensure compliance to a healthy diet. Moreover, honey exerts several effects such as lowering low density lipids and increasing high density lipids, thus reducing risk of atherosclerosis. In terms of beauty, honey can be used on skin and hair. It moisturizes skin through its natural humectant properties contributed by high contents of fructose and glucose. Honey treats acne on the skin due to its antibacterial activity, anti-inflammatory action and tissue repair. The hair can benefit from honey in such a way that the hair has abundance, and becomes easier to comb. However, there have not been as many studies regarding the use of honey in skin in comparison to its use for health. Therefore, future studies on honey could research its use, action and benefits in both cosmetics and dermatology
    corecore