13 research outputs found

    Ceruloplasmin is an endogenous inhibitor of myeloperoxidase

    Get PDF
    Myeloperoxidase is a neutrophil enzyme that promotes oxidative stress in numerous inflammatory pathologies. It uses hydrogen peroxide to catalyze the production of strong oxidants including chlorine bleach and free radicals. A physiological defense against the inappropriate action of this enzyme has yet to be identified. We found that myeloperoxidase oxidized 75% of the ascorbate in plasma from ceruloplasmin knock-out mice, but there was no significant loss in plasma from wild type animals. When myeloperoxidase was added to human plasma it became bound to other proteins and was reversibly inhibited. Ceruloplasmin was the predominant protein associated with myeloperoxidase. When the purified proteins were mixed, they became strongly but reversibly associated. Ceruloplasmin was a potent inhibitor of purified myeloperoxidase, inhibiting production of hypochlorous acid by 50% at 25 nM

    Peroxidasin protein expression and enzymatic activity in metastatic melanoma cell lines are associated with invasive potential

    Get PDF
    Peroxidasin, a heme peroxidase, has been shown to play a role in cancer progression. mRNA expression has been reported to be upregulated in metastatic melanoma cell lines and connected to the invasive phenotype, but little is known about how peroxidasin acts in cancer cells. We have analyzed peroxidasin protein expression and activity in eight metastatic melanoma cell lines using an ELISA developed with an in-house peroxidasin binding protein. RNAseq data analysis confirmed high peroxidasin mRNA expression in the five cell lines classified as invasive and low expression in the three non-invasive cell lines. Protein levels of peroxidasin were higher in the cell lines with an invasive phenotype. Active peroxidasin was secreted to the cell culture medium, where it accumulated over time, and peroxidasin protein levels in the medium were also much higher in invasive than non-invasive cell lines. The only well-established physiological role of peroxidasin is in the formation of a sulfilimine bond, which cross-links collagen IV in basement membranes via catalyzed oxidation of bromide to hypobromous acid. We found that peroxidasin secreted from melanoma cells formed sulfilimine bonds in uncross-linked collagen IV, confirming peroxidasin activity and hypobromous acid formation. Moreover, 3-bromotyrosine, a stable product of hypobromous acid reacting with tyrosine residues, was detected in invasive melanoma cells, substantiating that their expression of peroxidasin generates hypobromous acid, and showing that it does not exclusively react with collagen IV, but also with other biomolecules

    Hypochlorous acid inactivates myeloperoxidase inside phagocytosing neutrophils

    Get PDF
    When neutrophils phagocytose bacteria, they release myeloperoxidase (MPO) into phagosomes to catalyse the conversion of superoxide to the potent antimicrobial oxidant hypochlorous acid (HOCl). Here we show that within neutrophils, MPO is inactivated by HOCl. In this study, we aimed to identify the effects of HOCl on the structure and function of MPO, and determine the enzyme’s susceptibility to oxidative inactivation during phagocytosis. When hydrogen peroxide was added to a neutrophil granule extract containing chloride, MPO activity was rapidly lost in a HOCl-dependent reaction. With high concentrations of hydrogen peroxide, western blotting demonstrated that MPO was both fragmented and converted to high molecular weight aggregates. Using the purified enzyme, we showed that HOCl generated by MPO inactivated the enzyme by destroying its prosthetic heme groups and releasing iron. MPO protein was additionally modified by forming high molecular weight aggregates. Before inactivation occurred, MPO chlorinated itself to convert most of its amine groups to dichloramines. When human neutrophils phagocytosed Staphylococcus aureus, they released MPO that was largely inactivated in a process that required production of superoxide. Enzyme inactivation occurred inside neutrophils because it was not blocked when extracellular HOCl was scavenged with methionine. The inactivated enzyme contained a chlorinated tyrosine residue, establishing that it had reacted with HOCl. Our results demonstrate that MPO will substantially inactivate itself during phagocytosis, which may limit oxidant production inside phagosomes. Other neutrophil proteins are also likely to be inactivated. The chloramines formed on neutrophil proteins may contribute to the bactericidal milieu of the phagosome

    Pre-steady-state Kinetics Reveal the Substrate Specificity and Mechanism of Halide Oxidation of Truncated Human Peroxidasin 1

    No full text
    Human peroxidasin 1 is a homotrimeric multidomain peroxidase that is secreted to the extracellular matrix. The heme enzyme was shown to release hypobromous acid which mediates the formation of specific covalent sulfilimine bonds to reinforce collagen IV in basement membranes. Maturation by proteolytic cleavage is known to activate the enzyme. Here we present the first multi-mixing stopped-flow study on a fully functional truncated variant of human peroxidasin 1 comprising four immune-globulin-like domains and the catalytically active peroxidase domain. The kinetic data unravel the so far unknown substrate specificity and mechanism of halide oxidation of human peroxidasin 1. The heme enzyme is shown to follow the halogenation cycle which is induced by the rapid H2O2-mediated oxidation of the ferric enzyme to the redox intermediate Compound I. We demonstrate that chloride cannot act as two-electron donor of Compound I, whereas thiocyanate, iodide and bromide efficiently restore the ferric resting state. We present all relevant apparent bimolecular rate constants, the spectral signatures of the redox intermediates and the standard reduction potential of the Fe(III)/Fe(II) couple and we demonstrate that the prosthetic heme group is posttranslationally modified and cross-linked with the protein. These structural features provide the basis of human peroxidasin 1 to act as an effective generator of hypobromous acid which mediates the formation of covalent crosslinks in collagen IV

    Multidomain Human Peroxidasin 1 is a Highly Glycosylated and Stable Homotrimeric High-Spin Ferric Peroxidase.

    Get PDF
    Human peroxidasin 1 (hsPxd01) is a multidomain heme peroxidase that uses bromide as a cofactor for the formation of sulfilimine crosslinks. The latter confer critical structural reinforcement to collagen IV scaffolds. Here hsPxd01 and various truncated variants lacking non-enzymatic domains were recombinantly expressed in HEK cell lines. The N-glycosylation site occupancy and disulfide pattern, the oligomeric structure and unfolding pathway are reported. The homotrimeric ironprotein contains a covalently-bound ferric high-spin heme per subunit with a standard reduction potential of the Fe(III)/Fe(II) couple of -233 mV at pH 7.0. Despite sequence homology at the active site and biophysical properties similar to human peroxidases, the catalytic efficiency of bromide oxidation (kcat/KM) of full-length hsPxd01 is rather low but increased upon truncation. This is discussed with respect to its structure and proposed biosynthetic function in collagen IV crosslinking.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Human peroxidasin 1 promotes angiogenesis through ERK1/2, Akt and FAK pathways.

    No full text
    The term angiogenesis refers to sprouting of new blood vessels from pre-existing ones. The angiogenic process involves cell migration and tubulogenesis requiring interaction between endothelial cells and the extracellular matrix. Human peroxidasin 1 (hsPxd01) is a multidomain heme peroxidase found embedded in the basement membranes. As it promotes the stabilization of extracellular matrix, we investigated its possible role in angiogenesis both in vitro and in vivo.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore