23 research outputs found

    Volatiles Loss from Water Bearing Regolith Simulant at Lunar Environments

    Get PDF
    Permanently shadowed craters at the lunar poles contain water, ~5 wt% according to LCROSS. Interest in water for ISRU applications. Desire to 'ground truth' water using surface prospecting; e.g. Resource Prospector (RP) & RESOLVE. How to access subsurface water resources and accurately measure quantity; Excavation operations and exposure to lunar environment may affect the results A series a ground based dirty thermal vacuum tests are being conducted to better understand the subsurface sampling operations: Sample removal and transfer, Volatiles loss during sampling operations, Concept of operations, Instrumentation. This presentation covers: The capabilities of the VF-13 Thermal Vacuum Chamber (Tvac). The Resource Prospector TVAC hardware. The summary and results of 5 years of RP volatiles tests; 43 viable sample

    Near-Infrared Monitoring of Volatiles in Frozen Lunar Simulants While Drilling

    Get PDF
    In Situ Resource Utilization (ISRU) focuses on using local resources for mission consumables. The approach can reduce mission cost and risk. Lunar polar volatiles, e.g. water ice, have been detected via remote sensing measurements and represent a potential resource for both humans and propellant. The exact nature of the horizontal and depth distribution of the ice remains to be documented in situ. NASA's Resource Prospector mission (RP) is intended to investigate the polar volatiles using a rover, drill, and the RESOLVE science package. RP component level hardware is undergoing testing in relevant lunar conditions (cryovacuum). In March 2015 a series of drilling tests were undertaken using the Honeybee Robotics RP Drill, Near-Infrared Volatile Spectrometer System (NIRVSS), and sample capture mechanisms (SCM) inside a 'dirty' thermal vacuum chamber at the NASA Glenn Research Center. The goal of these tests was to investigate the ability of NIRVSS to monitor volatiles during drilling activities and assess delivery of soil sample transfer to the SCMs in order to elucidate the concept of operations associated with this regolith sampling method

    The Icebreaker Life Mission to Mars: A Search for Biomolecular Evidence for Life

    Get PDF
    The search for evidence of life on Mars is the primary motivation for the exploration of that planet. The results from previous missions, and the Phoenix mission in particular, indicate that the ice-cemented ground in the north polar plains is likely to be the most recently habitable place that is currently known on Mars. The near-surface ice likely provided adequate water activity during periods of high obliquity, ~ 5 Myr ago. Carbon dioxide and nitrogen is present in the atmosphere, and nitrates may be present in the soil. Perchlorate in the soil together with iron in basaltic rock provides a possible energy source for life. Furthermore, the presence of organics must once again be considered, as the results of the Viking GCMS are now suspect given the discovery of the thermally reactive perchlorate. Ground-ice may provide a way to preserve organic molecules for extended periods of time, especially organic biomarkers. The Mars Icebreaker Life mission focuses on the following science goals: 1. Search for specific biomolecules that would be conclusive evidence of life. 2. A general search for organic molecules in the ground ice. 3. Determine the processes of ground ice formation and the role of liquid water. 4. Understand the mechanical properties of the Mars polar ice-cemented soil. 5. Assess the recent habitability of the environment with respect to required elements to support life, energy sources, and possible toxic elements. And 6. Compare the elemental composition of the northern plains with mid-latitude sites. The Icebreaker Life payload has been designed around the Phoenix spacecraft and is targeted to a site near the Phoenix landing site. However, the Icebreaker payload could be supported on other Mars landing systems. Preliminary studies of the SpaceX Dragon lander show that it could support the Icebreaker payload for a landing either at the Phoenix site or at mid-latitudes. Duplicate samples could be cached as a target for possible return by a Mars Sample Return mission. If the samples were shown to contain organic biomarkers interest in returning them to Earth would be high

    Ionic liquids at electrified interfaces

    Get PDF
    Until recently, “room-temperature” (<100–150 °C) liquid-state electrochemistry was mostly electrochemistry of diluted electrolytes(1)–(4) where dissolved salt ions were surrounded by a considerable amount of solvent molecules. Highly concentrated liquid electrolytes were mostly considered in the narrow (albeit important) niche of high-temperature electrochemistry of molten inorganic salts(5-9) and in the even narrower niche of “first-generation” room temperature ionic liquids, RTILs (such as chloro-aluminates and alkylammonium nitrates).(10-14) The situation has changed dramatically in the 2000s after the discovery of new moisture- and temperature-stable RTILs.(15, 16) These days, the “later generation” RTILs attracted wide attention within the electrochemical community.(17-31) Indeed, RTILs, as a class of compounds, possess a unique combination of properties (high charge density, electrochemical stability, low/negligible volatility, tunable polarity, etc.) that make them very attractive substances from fundamental and application points of view.(32-38) Most importantly, they can mix with each other in “cocktails” of one’s choice to acquire the desired properties (e.g., wider temperature range of the liquid phase(39, 40)) and can serve as almost “universal” solvents.(37, 41, 42) It is worth noting here one of the advantages of RTILs as compared to their high-temperature molten salt (HTMS)(43) “sister-systems”.(44) In RTILs the dissolved molecules are not imbedded in a harsh high temperature environment which could be destructive for many classes of fragile (organic) molecules

    Deep Drilling and Sampling via the Wireline Auto-Gopher Driven by Piezoelectric Percussive Actuator and EM Rotary Motor

    No full text
    The ability to penetrate subsurfaces and perform sample acquisition at depths of meters is critical for future NASA in-situ exploration missions to bodies in the solar system, including Mars and Europa. A corer/sampler was developed with the goal of acquiring pristine samples by reaching depths on Mars beyond the oxidized and sterilized zone. To developed rotary-hammering coring drill, called Auto-Gopher, employs a piezoelectric actuated percussive mechanism for breaking formations and an electric motor rotates the bit to remove the powdered cuttings. This sampler is a wireline mechanism that is incorporated with an inchworm mechanism allowing thru cyclic coring and core removal to reach great depths. The penetration rate is being optimized by simultaneously activating the percussive and rotary motions of the Auto-Gopher. The percussive mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) mechanism that is driven by piezoelectric stack and that was demonstrated to require low axial preload. The Auto-Gopher has been produced taking into account the a lessons learned from the development of the Ultrasonic/Sonic Gopher that was designed as a percussive ice drill and was demonstrated in Antarctica in 2005 to reach about 2 meters deep. A field demonstration of the Auto-Gopher is currently being planned with objective of reaching as deep as 3 to 5 meters in tufa subsurface

    The Summation Fall 1962 (Vol.5 No.1)

    No full text
    Quarterly newsletter published by the University of Utah College of Law from Fall 1958 to Spring 1971

    The Summation Spring 1963 (Vol.5 No.3)

    No full text
    Quarterly newsletter published by the University of Utah College of Law from Fall 1958 to Spring 1971

    The Auto-Gopher: A Wireline Rotary-Percussive Deep Sampler

    No full text
    Accessing regions on planetary bodies that potentially preserved biosignatures or are presently habitable is vital to meeting NASA solar system "Search for Life" exploration objectives. To address these objectives, a wireline deep rotary-percussive corer called Auto-Gopher was developed. The percussive action provides effective material fracturing and the rotation provides effective cuttings removal. To increase the drill's penetration rate, the percussive and rotary motions are operated simultaneously. Initially, the corer was designed as a percussive mechanism for sampling ice and was demonstrated in 2005 in Antarctica reaching about 2 m deep. The lessons learned suggested the need to use a combination of rotation and hammering to maximize the penetration rate. This lesson was implemented into the Auto-Gopher-I deep drill which was demonstrated to reach 3-meter deep in gypsum. The average drilling power that was used has been in the range of 100-150 Watt, while the penetration rate was approximately 2.4 m/hr. Recently, a task has started with the goal to develop Auto-Gopher-II that is equipped to execute all the necessary functions in a single drilling unit. These functions also include core breaking, retention and ejection in addition drilling. In this manuscript, the Auto-Gopher-II, its predecessors and their capability are described and discussed

    Auto-Gopher: A Wireline Deep Sampler Driven by Piezoelectric Percussive Actuator and EM Rotary Motor

    No full text
    The ability to penetrate subsurfaces and perform sample acquisition at depth of meters may be critical for future NASA in-situ exploration missions to bodies in the solar system, including Mars and Europa. A corer/sampler was developed with the goal of enabling acquisition of samples from depths of several meters where if used on Mars would be beyond the oxidized and sterilized zone. For this purpose, we developed a rotary-hammering coring drill, called Auto-Gopher, which employs a piezoelectric actuated percussive mechanism for breaking formations and an electric motor that rotates the bit to remove the powdered cuttings. This sampler is a wireline mechanism that can be fed into and retrieved from the drilled hole using a winch and a cable. It includes an inchworm anchoring mechanism allowing the drill advancement and weight on bit control without twisting the reeling and power cables. The penetration rate is being optimized by simultaneously activating the percussive and rotary motions of the Auto-Gopher. The percussive mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) mechanism that is driven by piezoelectric stack and that was demonstrated to require low axial preload. The design and fabrication of this device were presented in previous publications. This paper presents the results of laboratory and field tests and lessons learned from this development
    corecore