

Volatiles Loss from water bearing regolith simulant at Lunar Environments

Julie Kleinhenz

NASA Glenn Research Center

Jim Smith

NASA Kennedy Space Center

Ted Roush & Anthony Colaprete

NASA Ames Research Center

Kris Zacny, Gale Paulsen, & Alex Wang

Honeybee Robotics Spacecraft Mechanisms

Aaron Paz

NASA Johnson Space Center

Lunar Polar Volatiles

- Permanently shadowed craters at the lunar poles contain water, ~5 wt% according to LCROSS
- Interest in water for ISRU applications
- Desire to 'ground truth' water using surface prospecting
 e.g. Resource Prospector (RP) & RESOLVE
- How to access subsurface water resources and accurately measure quantity
 - Excavation operations and exposure to lunar environment may affect the results

Volatile capture tests

- A series of ground based dirty thermal vacuum tests are being conducted to better understand the subsurface sampling operations
 - Sample removal and transfer
 - Volatiles loss during sampling operations
 - Concept of operations
 - Instrumentation
- This presentation covers:
 - The capabilities of the VF-13 Thermal Vacuum Chamber (TVAC)
 - The Resource Prospector TVAC hardware
 - The summary and results of 5 years of RP volatiles tests
 - 43 viable samples

VF13 Planetary Surface Simulation Facility

Dedicated 'dirty' thermal vacuum chamber operated with up to 1-ton of lunar soil simulant

Cold wall

Fixed Base

Dimensions

- Maximum internal volume of 6.35 m³
- Internal dimensions: 3.6 m tall, 1.35 m diameter with cold wall, 1.5 m without cold wall
 - Fixed base 1.08 m deep + Removable cap 2.52 m tall

Thermal capability

- Removable cold wall in cap (top 2.5 m of chamber)
 - Temperature control from ambient to liquid nitrogen temperatures
 - 2 semi circular halves, independently controlled to achieve temperature gradients
 - Minimum temperature 80K (liquid nitrogen cooled)
- Fixed base has separate Liquid Nitrogen cooling, independent of cold wall
 - Supports cooling of soil bin (existing bin is 0.278 m diameter, 1.2 m tall)
- Liquid nitrogen is supplied from a 55,000 gallon dewar Vacuum capability
- Achievable pressure on the order of 10⁻⁶ Torr, with soil
- Variety of customizable electrical and mechanical feed-throughs
- Four vacuum pumps to accommodate range of pressure regimes and pump rates
- Ports available for gas feed from portable bottles, to achieve customizable pressures and gas compositions (e.g., Mars environment)
 Facility operation
- PLC control software allows for unattended operation for majority of pump down and cooling
- Customizable digital data acquisition system supporting over 80 channels
- Internal cameras for optical access

VF13 Planetary Surface Simulation Facility

Planetary Soil Simulants

- Available bin sizes
 - Square bin: 1 m³ holds 800 kg of soil simulant
 - Cylindrical Cooled bin: 0.278 m diameter, 1.2 m tall, holds 100 kg of simulant
 - Can be instrumented with 15 thermocouples embedded in the soil
- Two bins of each size so that one can be prepared while other is tested
- Variety of simulants currently at GRC: LHT3m, JSC1A, Chenobi, GRC3, GRC1
- Preparation in SLOPE lab to accommodate large quantities of soil
 - Preparation can include: compaction (vibrational), moisture control (drying/wetting)

Available Test-Support Hardware

- Robotic Translation Table to position hardware above soil
 bin
 - Enables lateral motion of research hardware to reach different locations on the soil bed surface
 - Separate control of X and Y directions, manual control
- Drill system
 - Simple 2 motor drive system can accommodate a 1 m tall drill tool
 - Mounted to translation table for multiple drill holes in the same bin
 - Encoders for feedback of rotation rate and drill depth

NASA Glenn Research Center, Cleveland, OH

Resource Prospector: TVAC Hardware

OVEN Configuration (2017)

SCM Configuration (2016)

Drill: Sample retrieval NIRVSS: Soil surface assay OVEN or SCMs: Sample containment for analysis

Lunar Prospector Drill

- Developed by Honeybee Robotics, and based on the Mars Icebreaker drill
- 100cm long, 2.5cm diameter auger
 - 10cm sample section has wider flutes at high pitch to capture granular material
 - Progressive "Bite sampling" approach to drilling
 - Retains depth stratigraphy of the holes
 - Less material conveyed to surface, less chance of stuck bit
- Sample delivery mechanism
 - Deployed to surface as stabilizing foot
 - Fully contains the 10cm sample when auger retracted
 - Passive brush that rotates as auger spins past. Material brushed off auger and through funnel for collection
- Actuators: Percussion, deployment Z-stage, Drill Zstage, Auger rotation

Sample Capture Mechanisms (SCM)

- Capture soil from the auger and seal at vacuum conditions to retain volatiles
- Stepper motor actuated, spring driven mechanism with a knife edge-to-teflon seal, 100lbf clamp force
- Sealed 18ml crucibles easily removed for sample analysis
- 6 Sample Capture Mechanisms in each test for multiple samples.

RP Sample retrieval

Oxygen and Volatile Extraction Node (OVEN)

- Carousal system designed to reuse 12cc crucibles for sample capture and volatile evolution
 - Seal, Weigh, Heat, Dispose
 - Volatile analysis in downstream spectrometer, not available in TVAC
 - TVAC alteration:
 - Sample capture
 - Seal
 - Store
 - Sealed samples

 removed for analysis
 - Break vacuum to replace crucible

Near Infrared Volatiles Spectrometer Subsystem (NIRVSS)

- Views soil surface and drill cutting pile to evaluate surface water profile
- Components include:
 - Observation camera
 - Illumination sources (Lamp & LEDs)
 - Low wavelength Calibration Sensor
 - 2 Near Infrared Spectrometers (Fiber optic)

Variables

Variable	Target	Actual conditions
Pressure	minimize	Average 4e ⁻⁶ Torr Median 3e ⁻⁶ Torr Range: 2e ⁻⁵ Torr to 1.5e ⁻⁶ Torr
Cold Wall Temperature	-50°C or -170°C (sunlight surface or cold as possible)	-50°C or -170°C
Soil Temperature	<= -100°C	-80°C to -160°C (all but 3 under -100°C)
Soil Moisture	0.5 wt% to 5 wt%	4 test w/ 5 wt% 2 tests w/ 2.5 wt% 2 tests w/ 0.8 wt%. 2 tests w/ alternating layers of 5 wt% and 0.5 wt%
Crucible temperature	-20°C to +20°C	SCMS: -20°C or +10°C OVEN: ~+20°C
Exposure Time	minimize	~15 min to retrieve sample 5 min to fill crucible
Sample size	15 g	Average 12 g Median 14 g Range: 3.3 g to 20.7 g

www.nasa.gov

Results

- The sampling process had a greater impact on drier soil beds:
 - Average loss for 5% bed: 30%
 - Average loss for 0.8% bed: 80%
- If the sublimation rate is consistent, then for same exposure time a sample with lower moisture will lose a greater percentage

Results: Mass loss

- Sample mass loss divided by exposure time (out of hole) to get mass loss rates
- Total sample mass (symbols) correlates strongly with loss rate
 - Smaller samples have slower loss rate
 - For samples of similar size, loss rates are similar, regardless of starting moisture content

Results: sublimation driver

- Assuming the loss rates correlate with sublimation rate, what is the driving factor?
- Pressure is similar for all tests, which leaves temperature
- Which temperature? Samples exposed to several temperatures before delivery.

Results: RGA, When is the water lost?

Conclusions

- VF-13 is a 6.35 m3 dirty thermal vacuum chamber available for testing with simulants at lunar or Martian conditions.
- Volatiles loss tests for Resource Prospector (RP) have been conducted in VF-13 for 5 years
 - Volatiles loss during drill sampling and transfer operations
 - 3 RP subsystems integrated in these tests
 - 43 viable simulant samples have been analyzed
- The complexity of the sampling process (number of variables, exposure variability, etc) have made definitive conclusion challenging
 - Mass loss rates have consistency for similar sample size, but scatter cannot be correlated to temperature conditions
 - Analytical correlations to sublimation rates at temperature and pressure are not sufficient for correlation.
- Mass spectrometer data shows majority of water loss occurs during 'brushing' operation, when the sample is agitated upon delivery to crucible