6,020 research outputs found

    Quantum Singularities in Horava-Lifshitz Cosmology

    Get PDF
    The recently proposed Horava-Lifshitz (HL) theory of gravity is analyzed from the quantum cosmology point of view. By employing usual quantum cosmology techniques, we study the quantum Friedmann-Lemaitre-Robertson-Walker (FLRW) universe filled with radiation in the context of HL gravity. We find that this universe is quantum mechanically nonsingular in two different ways: the expectation value of the scale factor (t)(t) never vanishes and, if we abandon the detailed balance condition suggested by Horava, the quantum dynamics of the universe is uniquely determined by the initial wave packet and no boundary condition at a=0a=0 is indeed necessary.Comment: 13 pages, revtex, 1 figure. Final version to appear in PR

    Microstructure identification via detrended fluctuation analysis of ultrasound signals

    Full text link
    We describe an algorithm for simulating ultrasound propagation in random one-dimensional media, mimicking different microstructures by choosing physical properties such as domain sizes and mass densities from probability distributions. By combining a detrended fluctuation analysis (DFA) of the simulated ultrasound signals with tools from the pattern-recognition literature, we build a Gaussian classifier which is able to associate each ultrasound signal with its corresponding microstructure with a very high success rate. Furthermore, we also show that DFA data can be used to train a multilayer perceptron which estimates numerical values of physical properties associated with distinct microstructures.Comment: Submitted to Phys. Rev.

    Inspiration Mining: Intersecting Improbable Connections in a New Landscape of Cultural Reflection and Influence

    Get PDF
    This article aims to present a critical reflection on the collaborative curatorship of the exhibition “Intersecting Improbable Connections”. It is a transdisciplinary exhibition covering architecture, design, arts, among other fields, and calls for non-linear productive thinking strategies. It explores the intersection of unlikely relationships to inspire memorable visits to museums, and it feeds the Inspædia platform, creating a new landscape of reflection and cultural influence. It advocates a new concept of exhibition curation that minimizes costs (because it does not involve transportation or insurance for the pieces) and is intended to help stimulate creative processes. Based on a selection of content from the participating museums’ permanent exhibitions, duly marked with QR Codes, visitors can access that content that is already available on the Inspædia platform and explore potentially endless connections, without losing contact with the physical object (and vice versa).FCT – Fundação para a Ciência e a Tecnologia, in the scope of the projects SFRH/BPD/98427/2013, UID/EAT/04008/ 2019, and UID/AUR/04026/201

    Linearized stability analysis of thin-shell wormholes with a cosmological constant

    Full text link
    Spherically symmetric thin-shell wormholes in the presence of a cosmological constant are constructed applying the cut-and-paste technique implemented by Visser. Using the Darmois-Israel formalism the surface stresses, which are concentrated at the wormhole throat, are determined. This construction allows one to apply a dynamical analysis to the throat, considering linearized radial perturbations around static solutions. For a large positive cosmological constant, i.e., for the Schwarzschild-de Sitter solution, the region of stability is significantly increased, relatively to the null cosmological constant case, analyzed by Poisson and Visser. With a negative cosmological constant, i.e., the Schwarzschild-anti de Sitter solution, the region of stability is decreased. In particular, considering static solutions with a generic cosmological constant, the weak and dominant energy conditions are violated, while for a03Ma_0 \leq 3M the null and strong energy conditions are satisfied. The surface pressure of the static solution is strictly positive for the Schwarzschild and Schwarzschild-anti de Sitter spacetimes, but takes negative values, assuming a surface tension in the Schwarzschild-de Sitter solution, for high values of the cosmological constant and the wormhole throat radius.Comment: 16 pages, 10 figures, LaTeX2e, IOP style files. Accepted for publication in Classical and Quantum Gravit

    Static critical exponents of the ferromagnetic transition in spin glass re-entrant systems

    Full text link
    The static critical phenomenology near the Curie temperature of the re-entrant metallic alloys Au_0.81Fe_0.19, Ni_0.78Mn_0.22, Ni_0.79Mn_0.21 and amorphous a-Fe_0.98Zr_0.08 is studied using a variety of experimental techniques and methods of analysis. We have generally found that the values for the exponents alpha, beta, gamma and delta depart significantly from the predictions for the 3D Heisenberg model and are intermediate between these expectations and the values characterizing a typical spin glass transition. Comparing the exponents obtained in our work with indices for other re-entrant systems reported in the literature, a weak universality class may be defined where the exponents distribute within a certain range around average values.Comment: 17 pages, 11 figure

    The Two-Dimensional Analogue of General Relativity

    Full text link
    General Relativity in three or more dimensions can be obtained by taking the limit ω\omega\rightarrow\infty in the Brans-Dicke theory. In two dimensions General Relativity is an unacceptable theory. We show that the two-dimensional closest analogue of General Relativity is a theory that also arises in the limit ω\omega\rightarrow\infty of the two-dimensional Brans-Dicke theory.Comment: 8 pages, LaTeX, preprint DF/IST-17.9

    Exact Conformal Scalar Field Cosmologies

    Full text link
    New exact solutions of Einstein's gravity coupled to a self-interacting conformal scalar field are derived in this work. Our approach extends a solution-generating technique originally introduced by Bekenstein for massless conformal scalar fields. Solutions are obtained for a Friedmann-Robertson-Walker geometry both for the cases of zero and non-zero curvatures, and a variety of interesting features are found. It is shown that one class of solutions tends asymptotically to a power-law inflationary behaviour S(t)tpS(t)\sim t^p with p>1p>1, while another class exhibits a late time approach to the S(t)tS(t)\sim t behaviour of the coasting models. Bouncing models which avoid an initial singularity are also obtained. A general discussion of the asymptotic behaviour and of the possibility of occurrence of inflation is provided.Comment: Latex, 27 pages plus 16 figures (not included, available from the authors upon request) DFFCUL-94-01-0

    Quantum singularities in FRW universe revisited

    Full text link
    The components of the Riemann tensor in the tetrad basis are quantized and, through the Einstein equation, we find the local expectation value in the ontological interpretation of quantum mechanics of the energy density and pressure of a perfect fluid with equation of state p=13ρp=\frac{1}{3}\rho in the flat Friedmann-Robertson-Walker quantum cosmological model. The quantum behavior of the equation of state and energy conditions are then studied and it is shown that the later is violated since the singularity is removed with the introduction of quantum cosmology, but in the classical limit both the equation of state and the energy conditions behave as in the classical model. We also calculate the expectation value of the scale factor for several wave packets in the many-worlds interpretation in order to show the independence of the non singular character of the quantum cosmological model with respect to the wave packet representing the wave function of the Universe. It is also shown that, with the introduction of non-normalizable wave packets, solutions of the Wheeler-DeWitt equation, the singular character of the scale factor, can be recovered in the ontological interpretation.Comment: 15 pages, revtex, accepted for publication in PR

    Pro-active Meeting Assistants: Attention Please!

    Get PDF
    This paper gives an overview of pro-active meeting assistants, what they are and when they can be useful. We explain how to develop such assistants with respect to requirement definitions and elaborate on a set of Wizard of Oz experiments, aiming to find out in which form a meeting assistant should operate to be accepted by participants and whether the meeting effectiveness and efficiency can be improved by an assistant at all. This paper gives an overview of pro-active meeting assistants, what they are and when they can be useful. We explain how to develop such assistants with respect to requirement definitions and elaborate on a set of Wizard of Oz experiments, aiming to find out in which form a meeting assistant should operate to be accepted by participants and whether the meeting effectiveness and efficiency can be improved by an assistant at all
    corecore