143 research outputs found

    Structure and composition of altered riparian forests in an agricultural Amazonian landscape

    Get PDF
    Author Posting. © Ecological Society of America, 2015. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecological Applications 25 (2015): 1725-1838, doi:10.1890/14-1740.1.Deforestation and fragmentation influence the microclimate, vegetation structure, and composition of remaining patches of tropical forest. In the southern Amazon, at the frontier of cropland expansion, forests are converted and fragmented in a pattern that leaves standing riparian forests whose dimensions are mandated by the Brazilian National Forest Code. These altered riparian forests share many characteristics of well-studied upland forest fragments, but differ because they remain connected to larger areas of forest downstream, and because they may experience wetter soil conditions because reduction of forest cover in the surrounding watershed raises groundwater levels and increases stream runoff. We compared forest regeneration, structure, composition, and diversity in four areas of intact riparian forest and four areas each of narrow, medium, and wide altered riparian forests that have been surrounded by agriculture since the early 1980s. We found that seedling abundance was reduced by as much as 64% and sapling abundance was reduced by as much as 67% in altered compared to intact riparian forests. The most pronounced differences between altered and intact forest occurred near forest edges and within the narrowest sections of altered riparian forests. Woody plant species composition differed and diversity was reduced in altered forests compared to intact riparian forests. However, despite being fragmented for several decades, large woody plant biomass and carbon storage, the number of live or dead large woody plants, mortality rates, and the size distribution of woody plants did not differ significantly between altered and intact riparian forests. Thus, even in these relatively narrow forests with high edge : area ratios, we saw no evidence of the increases in mortality and declines in biomass that have been found in other tropical forest fragment studies. However, because of the changes in both species community and reduced regeneration, it is unclear how long this relative lack of change will be sustained. Additionally, Brazil recently passed a law in their National Forest Code allowing narrower riparian buffers than those studied here in restored areas, which could affect their long-term sustainability.This research has been supported by a grant from the U.S. Environmental Protection Agency's Science to Achieve Results (STAR) program (Award #: FP-91749001-0). Additional support was provided by NSF Award # DEB 0949370 and the São Paulo Research Foundation (FAPESP)

    Drought effects on litterfall, wood production and belowground carbon cycling in an Amazon forest: results of a throughfall reduction experiment

    Get PDF
    The Amazon Basin experiences severe droughts that may become more common in the future. Little is known of the effects of such droughts on Amazon forest productivity and carbon allocation. We tested the prediction that severe drought decreases litterfall and wood production but potentially has multiple cancelling effects on belowground production within a 7-year partial throughfall exclusion experiment. We simulated an approximately 35–41% reduction in effective rainfall from 2000 through 2004 in a 1 ha plot and compared forest response with a similar control plot. Wood production was the most sensitive component of above-ground net primary productivity (ANPP) to drought, declining by 13% the first year and up to 62% thereafter. Litterfall declined only in the third year of drought, with a maximum difference of 23% below the control plot. Soil CO2 efflux and its 14C signature showed no significant treatment response, suggesting similar amounts and sources of belowground production. ANPP was similar between plots in 2000 and declined to a low of 41% below the control plot during the subsequent treatment years, rebounding to only a 10% difference during the first post-treatment year. Live aboveground carbon declined by 32.5 Mg ha−1 through the effects of drought on ANPP and tree mortality. Results of this unreplicated, long-term, large-scale ecosystem manipulation experiment demonstrate that multi-year severe drought can substantially reduce Amazon forest carbon stocks

    Contradições entre a legislação ambiental e a legislação indigenista no Brasil contemporâneo: o protagonismo Mbyá Guarani na autodemarcação da terra indígena Tekoá Mirim

    Get PDF
    Propôs-se neste trabalho evidenciar o protagonismo Mbyá Guarani, concretizado no processo de luta pela autodemarcação da Terra Indígena Tekoá Mirim, cuja localização no interior do Parque Estadual da Serra do Mar, circunscrita pelo município de Praia Grande no litoral do estado de São Paulo, fez com que as instâncias do Poder Executivo Municipal passassem a percebê-los como invasores, e mais, corroborou para que a Secretaria Estadual de Meio Ambiente, assumisse a postura de considerar a permanência dos Mbyá Guarani que vivem na Tekoá Mirim, contraria ao ‘corpus legal’ que legisla sobre a ocupação humana nas Unidades de Conservação Ambiental. Diante de tal contexto, pretende-se dar visibilidade às motivações sociocosmológicas e etnohistóricas que justificam a dinâmica de deslocamento e ocupação espacial dos Mbyá Guarani nesta autodemarcação territorial

    Starch and lipid storage strategies in tropical trees relate to growth and mortality

    Get PDF
    Summary Non‐structural carbon (NSC) storage (i.e. starch, soluble sugras and lipids) in tree stems play important roles in metabolism and growth. Their spatial distribution in wood may explain species‐specific differences in carbon storage dynamics, growth and survival. However, quantitative information on the spatial distribution of starch and lipids in wood is sparse due to methodological limitations. Here we assessed differences in wood NSC and lipid storage between tropical tree species with different growth and mortality rates and contrasting functional types. We measured starch and soluble sugars in wood cores up to 4 cm deep into the stem using standard chemical quantification methods and histological slices stained with Lugol's iodine. We also detected neutral lipids using histological slices stained with Oil‐Red‐O. The histological method allowed us to group individuals into two categories according to their starch storage strategy: fiber‐storing trees and parenchyma‐storing trees. The first group had a bigger starch pool, slower growth and lower mortality rates than the second group. Lipid storage was found in wood parenchyma in five species and was related to low mortality rates. The quantification of the spatial distribution of starch and lipids in wood improves our understanding of NSC dynamics in trees and reveals additional dimensions of tree growth and survival strategies

    Surprisingly modest water quality impacts from expansion and intensification of large-scale commercial agriculture in the Brazilian Amazon-Cerrado region

    Get PDF
    © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Tropical Conservation Science 10 (2017): 1-5, doi:10.1177/1940082917720669.Large-scale commercial cropping of soybeans expanded in the tropical Amazon and Cerrado biomes of Brazil after 1990. More recently, cropping intensified from single-cropping of soybeans to double-cropping of soybeans with corn or cotton. Cropland expansion and intensification, and the accompanying use of mineral fertilizers, raise concerns about whether nutrient runoff and impacts to surface waters will be similar to those experienced in commercial cropland regions at temperate latitudes. We quantified water infiltration through soils, water yield, and streamwater chemistry in watersheds draining native tropical forest and single- and double-cropped areas on the level, deep, highly weathered soils where cropland expansion and intensification typically occurs. Although water yield increased four-fold from croplands, streamwater chemistry remained largely unchanged. Soil characteristics exerted important control over the movement of nitrogen (N) and phosphorus (P) into streams. High soil infiltration rates prevented surface erosion and movement of particulate P, while P fixation in surface soils restricted P movement to deeper soil layers. Nitrogen retention in deep soils, likely by anion exchange, also appeared to limit N leaching and export in streamwater from both single- and double-cropped watersheds that received nitrogen fertilizer. These mechanisms led to lower streamwater P and N concentrations and lower watershed N and P export than would be expected, based on studies from temperate croplands with similar cropping and fertilizer application practices.The work described here was supported by National Science Foundation grants EF 1655432, IOS 1457662 and ICER 1342953 and grants from the Fundação de Amparo à Pesquisa do Estado de São Paulo

    Drivers and mechanisms of tree mortality in moist tropical forests

    Get PDF
    Tree mortality rates appear to be increasing in moist tropical forests (MTFs) with significant carbon cycle consequences. Here, we review the state of knowledge regarding MTF tree mortality, create a conceptual framework with testable hypotheses regarding the drivers, mechanisms and interactions that may underlie increasing MTF mortality rates, and identify the next steps for improved understanding and reduced prediction. Increasing mortality rates are associated with rising temperature and vapor pressure deficit, liana abundance, drought, wind events, fire and, possibly, CO2 fertilization-induced increases in stand thinning or acceleration of trees reaching larger, more vulnerable heights. The majority of these mortality drivers may kill trees in part through carbon starvation and hydraulic failure. The relative importance of each driver is unknown. High species diversity may buffer MTFs against large-scale mortality events, but recent and expected trends in mortality drivers give reason for concern regarding increasing mortality within MTFs. Models of tropical tree mortality are advancing the representation of hydraulics, carbon and demography, but require more empirical knowledge regarding the most common drivers and their subsequent mechanisms. We outline critical datasets and model developments required to test hypotheses regarding the underlying causes of increasing MTF mortality rates, and improve prediction of future mortality under climate change

    Fire in the Xingu region: its determinants and effects on vegetation and socio-environmental relevant resources

    Get PDF
    Slash-and-burning agricultural systems represent an important source of food for indigenous communities in Amazonia and have been conducted for centuries or millennia. However, the traditional use of fire has ignited an increasing number of wildfires. In 2010, for instance, 298,000 hectares of forests burned in the Xingu Indigenous Park (XIP). Yet, it is still unclear what are the main factors driving this apparent change in fire regimes inside the PIX, as well as the consequences of such changes to vegetation dynamics, ecosystem services, and food security for the indigenous communities. Here we describe the activities we are conducting on the scope of a project that aims to quantify the causes and consequences of changes in fire regimes inside the XIP and are funded by the Brazilian National Research Council (CNPq) and the Brazilian Institute of Environment and Renewable Natural Resources (IBAMA). Objectives of the project include: 1) mapping burned areas inside the PIX over the past few decades using high-resolution imagery, differentiating those fire scars in slash-and-burn areas from wildfires in primary forests; 2) quantification of the combined roles of forest fires, droughts events, and forest management by indigenous peoples on recent changes of forest cover inside the XIP. Preliminary results indicate large areas on forest the XIP are now degraded mainly as a result of the increases in the burned area in the past two decades. The number of fire events in combination with number of drought years were the main predictors forest degradation. Overall, results of this project will contribute to a better understanding of the drivers of regional changes in fire regimes. We are also generating valuable information about management techniques that can reduce fire-related degradation of native forests and the ecosystem services that these forests provide for indigenous peoples, what can be used to improve food security for local communities of the PIX
    corecore