12 research outputs found
Chiral signatures of herbicides and metabolites concentrations as tools to characterize the hydrodynamic of aquifer
International audienc
Processus hydrodynamiques et de rétention dans le transfert des pesticides dans la zone non saturée : Epérimentations et modélisations avec le glyphosate, le S-métolachlore et leurs métabolites dans les solides fluvio-glaciaires de l'Est lyonnais
Vadose zone play a key role in pesticides transfer and groundwater quality. Knowledgeâs about leaching and retention processes in the vadose zone below the shallow soil zone are still poorly understood. Transfer of glyphosate, S-metolachlor (SMOC), and their metabolites AMPA, ESA-metolachlor (MESA) and OXA-metolachlor (MOXA) is studied in unsaturated columns filled with two glaciofluvial materials collected in the East of Lyon: a sand, S-x, and a bimodal gravel, Gcm,b. Experiments show water fractionation into mobile and immobile compartments with variable importance according to material column. SMOC outflow is delayed compared to the conservative tracer. SMOC mass balance is in deficit revealing retention in columns. At the opposite, complete mass elution associated with retardation factors close to unity shows that there is no adsorption of MESA and MOXA in either lithofacies. Glyphosate and AMPA mobility is very low in the one Gcm,b column studied with amounts in leachates inferior to 1% of applied. Modelling show pesticides and metabolites transfer is affected by both flow regionalisation and non-equilibrium sorption. Chemical kinetic of sorption mechanisms is studied with complementary batch experiments. The high glaciofluvial materials reactivity, in some cases upper than soil reactivity from the study site, could be attributed to oxides and clay minerals.La zone non saturĂ©e joue un rĂŽle clĂ© sur le transfert des pesticides et la qualitĂ© des eaux souterraines. Les connaissances sur les processus dâĂ©coulement et de rĂ©tention dans les matĂ©riaux gĂ©ologiques de la zone non saturĂ©e au-delĂ des sols sont toutefois parcellaires. Le transfert du glyphosate et du S-mĂ©tolachlore (SMOC), et de leurs mĂ©tabolites AMPA, ESA-mĂ©tolachlore (MESA) et OXA-mĂ©tolachlore (MOXA) est Ă©tudiĂ© en colonne pour deux matĂ©riaux fluvio-glaciaires issus dâun aquifĂšre de lâEst lyonnais : un sable, S-x, et un mĂ©lange bimodal de graviers et de sables, Gcm,b. Pour des conditions de non-saturation en eau, lâĂ©coulement dans les colonnes est fractionnĂ© en deux zones, eau mobile et eau immobile, dâimportance variable suivant le solide. La sortie du SMOC est retardĂ©e par rapport au traceur de lâeau ; son bilan de masse dĂ©ficitaire traduit une rĂ©tention de la molĂ©cule lors de son transfert. A lâinverse, le MESA et le MOXA se comportent comme le traceur de lâeau. Le glyphosate et lâAMPA sont trĂšs peu mobiles dans la colonne de Gcm,b (seul matĂ©riau Ă©tudiĂ©) avec des quantitĂ©s Ă©luĂ©es infĂ©rieures Ă 1% de la quantitĂ© appliquĂ©e. La modĂ©lisation montre que le transfert des molĂ©cules est affectĂ© de maniĂšre variable suivant le matĂ©riau par la cinĂ©tique physique dâĂ©change entre les zones dâeau mobile et immobile et par la cinĂ©tique chimique des molĂ©cules. Cette cinĂ©tique chimique est dĂ©crite par des expĂ©rimentations complĂ©mentaires de sorption en batch. La caractĂ©risation des matĂ©riaux rĂ©vĂšle la prĂ©sence dâoxydes et de minĂ©raux argileux qui pourrait expliquer leur forte rĂ©activitĂ©, qui sâavĂšre parfois supĂ©rieure Ă celle des sols de la zone dâĂ©tude
Hydrodynamic and retention processes in pesticide transfer in the vadose zone : Experiments and modelling of glyphosate, S-metolachlor and their metabolites transfer in glaciofluvial solids of the East of Lyon
La zone non saturĂ©e joue un rĂŽle clĂ© sur le transfert des pesticides et la qualitĂ© des eaux souterraines. Les connaissances sur les processus dâĂ©coulement et de rĂ©tention dans les matĂ©riaux gĂ©ologiques de la zone non saturĂ©e au-delĂ des sols sont toutefois parcellaires. Le transfert du glyphosate et du S-mĂ©tolachlore (SMOC), et de leurs mĂ©tabolites AMPA, ESA-mĂ©tolachlore (MESA) et OXA-mĂ©tolachlore (MOXA) est Ă©tudiĂ© en colonne pour deux matĂ©riaux fluvio-glaciaires issus dâun aquifĂšre de lâEst lyonnais : un sable, S-x, et un mĂ©lange bimodal de graviers et de sables, Gcm,b. Pour des conditions de non-saturation en eau, lâĂ©coulement dans les colonnes est fractionnĂ© en deux zones, eau mobile et eau immobile, dâimportance variable suivant le solide. La sortie du SMOC est retardĂ©e par rapport au traceur de lâeau ; son bilan de masse dĂ©ficitaire traduit une rĂ©tention de la molĂ©cule lors de son transfert. A lâinverse, le MESA et le MOXA se comportent comme le traceur de lâeau. Le glyphosate et lâAMPA sont trĂšs peu mobiles dans la colonne de Gcm,b (seul matĂ©riau Ă©tudiĂ©) avec des quantitĂ©s Ă©luĂ©es infĂ©rieures Ă 1% de la quantitĂ© appliquĂ©e. La modĂ©lisation montre que le transfert des molĂ©cules est affectĂ© de maniĂšre variable suivant le matĂ©riau par la cinĂ©tique physique dâĂ©change entre les zones dâeau mobile et immobile et par la cinĂ©tique chimique des molĂ©cules. Cette cinĂ©tique chimique est dĂ©crite par des expĂ©rimentations complĂ©mentaires de sorption en batch. La caractĂ©risation des matĂ©riaux rĂ©vĂšle la prĂ©sence dâoxydes et de minĂ©raux argileux qui pourrait expliquer leur forte rĂ©activitĂ©, qui sâavĂšre parfois supĂ©rieure Ă celle des sols de la zone dâĂ©tude.Vadose zone play a key role in pesticides transfer and groundwater quality. Knowledgeâs about leaching and retention processes in the vadose zone below the shallow soil zone are still poorly understood. Transfer of glyphosate, S-metolachlor (SMOC), and their metabolites AMPA, ESA-metolachlor (MESA) and OXA-metolachlor (MOXA) is studied in unsaturated columns filled with two glaciofluvial materials collected in the East of Lyon: a sand, S-x, and a bimodal gravel, Gcm,b. Experiments show water fractionation into mobile and immobile compartments with variable importance according to material column. SMOC outflow is delayed compared to the conservative tracer. SMOC mass balance is in deficit revealing retention in columns. At the opposite, complete mass elution associated with retardation factors close to unity shows that there is no adsorption of MESA and MOXA in either lithofacies. Glyphosate and AMPA mobility is very low in the one Gcm,b column studied with amounts in leachates inferior to 1% of applied. Modelling show pesticides and metabolites transfer is affected by both flow regionalisation and non-equilibrium sorption. Chemical kinetic of sorption mechanisms is studied with complementary batch experiments. The high glaciofluvial materials reactivity, in some cases upper than soil reactivity from the study site, could be attributed to oxides and clay minerals
Absorption du glyphosate et de l\u27AMPA dans la zone non saturée d\u27un aquifÚre sédimentaire
La zone non saturée des aquifÚres est supposée jouer un rÎle important dans le transfert de pesticides vers les eaux souterraines mais les mécanismes de ce transfert sont actuellement mal connus. L\u27étude se propose de répondre à cette problématique en travaillant sur un secteur du bassin RhÎne-Méditerranée-Corse dans lequel les nombreux aquifÚres sédimentaires, fortement sollicités, présentent pour une grande partie d\u27entre eux des problÚmes de qualité provenant de pollutions d\u27origine agricole, industrielle ou urbaine
Processus hydrodynamiques et de rétention dans le transfert des pesticides dans la zone non saturée : Epérimentations et modélisations avec le glyphosate, le S-métolachlore et leurs métabolites dans les solides fluvio-glaciaires de l'Est lyonnais
Vadose zone play a key role in pesticides transfer and groundwater quality. Knowledgeâs about leaching and retention processes in the vadose zone below the shallow soil zone are still poorly understood. Transfer of glyphosate, S-metolachlor (SMOC), and their metabolites AMPA, ESA-metolachlor (MESA) and OXA-metolachlor (MOXA) is studied in unsaturated columns filled with two glaciofluvial materials collected in the East of Lyon: a sand, S-x, and a bimodal gravel, Gcm,b. Experiments show water fractionation into mobile and immobile compartments with variable importance according to material column. SMOC outflow is delayed compared to the conservative tracer. SMOC mass balance is in deficit revealing retention in columns. At the opposite, complete mass elution associated with retardation factors close to unity shows that there is no adsorption of MESA and MOXA in either lithofacies. Glyphosate and AMPA mobility is very low in the one Gcm,b column studied with amounts in leachates inferior to 1% of applied. Modelling show pesticides and metabolites transfer is affected by both flow regionalisation and non-equilibrium sorption. Chemical kinetic of sorption mechanisms is studied with complementary batch experiments. The high glaciofluvial materials reactivity, in some cases upper than soil reactivity from the study site, could be attributed to oxides and clay minerals.La zone non saturĂ©e joue un rĂŽle clĂ© sur le transfert des pesticides et la qualitĂ© des eaux souterraines. Les connaissances sur les processus dâĂ©coulement et de rĂ©tention dans les matĂ©riaux gĂ©ologiques de la zone non saturĂ©e au-delĂ des sols sont toutefois parcellaires. Le transfert du glyphosate et du S-mĂ©tolachlore (SMOC), et de leurs mĂ©tabolites AMPA, ESA-mĂ©tolachlore (MESA) et OXA-mĂ©tolachlore (MOXA) est Ă©tudiĂ© en colonne pour deux matĂ©riaux fluvio-glaciaires issus dâun aquifĂšre de lâEst lyonnais : un sable, S-x, et un mĂ©lange bimodal de graviers et de sables, Gcm,b. Pour des conditions de non-saturation en eau, lâĂ©coulement dans les colonnes est fractionnĂ© en deux zones, eau mobile et eau immobile, dâimportance variable suivant le solide. La sortie du SMOC est retardĂ©e par rapport au traceur de lâeau ; son bilan de masse dĂ©ficitaire traduit une rĂ©tention de la molĂ©cule lors de son transfert. A lâinverse, le MESA et le MOXA se comportent comme le traceur de lâeau. Le glyphosate et lâAMPA sont trĂšs peu mobiles dans la colonne de Gcm,b (seul matĂ©riau Ă©tudiĂ©) avec des quantitĂ©s Ă©luĂ©es infĂ©rieures Ă 1% de la quantitĂ© appliquĂ©e. La modĂ©lisation montre que le transfert des molĂ©cules est affectĂ© de maniĂšre variable suivant le matĂ©riau par la cinĂ©tique physique dâĂ©change entre les zones dâeau mobile et immobile et par la cinĂ©tique chimique des molĂ©cules. Cette cinĂ©tique chimique est dĂ©crite par des expĂ©rimentations complĂ©mentaires de sorption en batch. La caractĂ©risation des matĂ©riaux rĂ©vĂšle la prĂ©sence dâoxydes et de minĂ©raux argileux qui pourrait expliquer leur forte rĂ©activitĂ©, qui sâavĂšre parfois supĂ©rieure Ă celle des sols de la zone dâĂ©tude
Pesticide transfer in the vadose zone: impact of geological materials and pesticide properties.
International audienc
Glyphosate and AMPA adsorption in soils: laboratory experiments and pedotransfer rules
International audienceAdsorption of the herbicide glyphosate and its main metabolite AMPA (aminomethylphosphonic acid) was investigated on 17 different agricultural soils. Batch equilibration adsorption data are shown by Freundlich adsorp- tion isotherms. Glyphosate adsorption is clearly affected by equilibration concentrations, but the nonlinear AMPA adsorp- tion isotherms indicate saturation of the adsorption sites with increasing equilibrium concentrations. pHCaCl2 (i.e. experi- mental pH) is the major parameter governing glyphosate and AMPA adsorption in soils. However, considering pHCaCl2 values, available phosphate amount, and amorphous iron and aluminium oxide contents by using a nonlinear multiple regression equation, obtains the most accurate and powerful pedotransfer rule for predicting the adsorption constants for these two molecules. As amorphous iron and aluminium oxide contents in soil are not systematically determined, we also propose a pedotransfer rule with two variablesâpHCaCl2 values and available phosphate amountâthat remains accept- able for both molecules. Moreover, the use of the commonly measured pHwater or pHKCl values gives less accurate results compared to pHCaCl2 measurements. To our knowledge, this study is the first AMPA adsorption characterization for a sig- nificant number of temperate climate soils
Adsorption of Metolachlor and Its Transformation Products, ESA and OXA, on Activated Carbons
Three activated carbons from lignocellulosic residues and a commercial carbon have been tested for the removal of the herbicide metolachlor and its two degradation transformation products, named ESA and OXA, in aqueous solutions. The kinetics and equilibrium adsorption were studied for the four materials, showing higher adsorption capacities for the three molecules on the carbon materials chemically activated by potassium carbonate, mainly associated with its greater porous development, especially in the range of microporosity. Additionally, the chemical composition of the adsorbents also highlighted their important influence on the ESA and OXA adsorption process. The efficient adsorption of both compoundsâeven at low initial concentrationsâallows a removal efficiency of up to 80% to be reached, revealing promising perspectives for the use of biomass-derived carbon materials for the elimination of not only the herbicide metolachlor, but also its degradation compounds from contaminated wastewater
Reactivity of vadose-zone solids to S-metolachlor and its two main metabolites: case of a glaciofluvial aquifer
International audienceThe vulnerability of groundwater to pesticides is governed in part by sorption mechanisms in the vadose zone, commonly studied in soil but less well-known in the geological solids. To alleviate this lack of knowledge, adsorption of the herbicide S-metolachlor (SMOC) and of two of its metabolitesâmetolachlor ethane sulfonic acid (MESA) and metolachlor oxanilic acid (MOXA)âwas studied with batch equilibrium method on seventeen surface soils and three geological solids of the vadose zone overlying a glaciofluvial aquifer. In grainsize terms, the latter three were sand for the first two samples and gravel for the third. Adsorption is ordered as follows: SMOC > > MESA > MOXA, except for one of the geological solids for which MESA adsorption was slightly higher than that of SMOC (Kd = 0.73 vs. 0.44 L kgâ1). The low MOXA adsorption could only be quantified for the gravel sample (Kd = 0.74 L kgâ1), which was also more reactive than all the other samples to MESA and SMOC (Kd = 2.08 and 28.8 L kgâ1, respectively). Statistical multivariate tests related the highest Kd values for SMOC with the soils and geological solids with the highest organic-carbon and clay-fraction contents. The highest Kd values for MESA were found in the samples containing high oxide concentrations. Our results shed a new light on the adsorption of SMOC, MESA and MOXA suggesting that during their transfer to groundwater, pesticides and metabolites can be adsorbed in the vadose zone on both soils and geological solids
Dynamics of Soil Microbial Communities During Diazepam and Oxazepam Biodegradation in Soil Flooded by Water From a WWTP
International audienceThe demand for energy and chemicals is constantly growing, leading to an increase of the amounts of contaminants discharged to the environment. Among these, pharmaceutical molecules are frequently found in treated wastewater that is discharged into superficial waters. Indeed, wastewater treatment plants (WWTPs) are designed to remove organic pollution from urban effluents but are not specific, especially toward contaminants of emerging concern (CECs), which finally reach the natural environment. In this context, it is important to study the fate of micropollutants, especially in a soil aquifer treatment (SAT) context for water from WWTPs, and for the most persistent molecules such as benzodiazepines. In the present study, soils sampled in a reed bed frequently flooded by water from a WWTP were spiked with diazepam and oxazepam in microcosms, and their concentrations were monitored for 97 days. It appeared that the two molecules were completely degraded after 15 days of incubation. Samples were collected during the experiment in order to follow the dynamics of the microbial communities, based on 16S rRNA gene sequencing for Archaea and Bacteria, and ITS2 gene for Fungi. The evolution of diversity and of specific operating taxonomic units (OTUs) highlighted an impact of the addition of benzodiazepines, a rapid resilience of the fungal community and an evolution of the bacterial community. It appeared that OTUs from the Brevibacillus genus were more abundant at the beginning of the biodegradation process, for diazepam and oxazepam conditions. Additionally, Tax4Fun tool was applied to 16S rRNA gene sequencing data to infer on the evolution of specific metabolic functions during biodegradation. It finally appeared that the microbial community in soils frequently exposed to water from WWTP, potentially containing CECs such as diazepam and oxazepam, may be adapted to the degradation of persistent contaminants