10 research outputs found

    Characterization of protein adsorption onto FePt nanoparticles using dual-focus fluorescence correlation spectroscopy

    No full text
    Using dual-focus fluorescence correlation spectroscopy, we have analyzed the adsorption of three human blood serum proteins, namely serum albumin, apolipoprotein A-I and apolipoprotein E4, onto polymer-coated, fluorescently labeled FePt nanoparticles (~12 nm diameter) carrying negatively charged carboxyl groups on their surface. For all three proteins, a step-wise increase in hydrodynamic radius with protein concentration was observed, strongly suggesting the formation of protein monolayers that enclose the nanoparticles. Consistent with this interpretation, the absolute increase in hydrodynamic radius can be correlated with the molecular shapes of the proteins known from X-ray crystallography and solution experiments, indicating that the proteins bind on the nanoparticles in specific orientations. The equilibrium dissociation coefficients, measuring the affinity of the proteins to the nanoparticles, were observed to differ by almost four orders of magnitude. These variations can be understood in terms of the electrostatic properties of the proteins. From structure-based calculations of the surface potentials, positively charged patches of different extents can be revealed, through which the proteins interact electrostatically with the negatively charged nanoparticle surfaces

    Impact of Protein Modification on the Protein Corona on Nanoparticles and Nanoparticle–Cell Interactions

    No full text
    Recent studies have firmly established that cellular uptake of nanoparticles is strongly affected by the presence and the physicochemical properties of a protein adsorption layer around these nanoparticles. Here, we have modified human serum albumin (HSA), a serum protein often used in model studies of protein adsorption onto nanoparticles, to alter its surface charge distribution and investigated the consequences for protein corona formation around small (radius ∼5 nm), dihydrolipoic acid-coated quantum dots (DHLA-QDs) by using fluorescence correlation spectroscopy. HSA modified by succinic anhydride (HSAsuc) to generate additional carboxyl groups on the protein surface showed a 3-fold decreased binding affinity toward the nanoparticles. A 1000-fold enhanced affinity was observed for HSA modified by ethylenediamine (HSAam) to increase the number of amino functions on the protein surface. Remarkably, HSAsuc formed a much thicker protein adsorption layer (8.1 nm) than native HSA (3.3 nm), indicating that it binds in a distinctly different orientation on the nanoparticle, whereas the HSAam corona (4.6 nm) is only slightly thicker. Notably, protein binding to DHLA-QDs was found to be entirely reversible, independent of the modification. We have also measured the extent and kinetics of internalization of these nanoparticles without and with adsorbed native and modified HSA by HeLa cells. Pronounced variations were observed, indicating that even small physicochemical changes of the protein corona may affect biological responses

    Zwitterionic surface coating of quantum dots reduces protein adsorption and cellular uptake

    No full text
    We have studied the effect of the zwitterionic surface coating of quantum dots (QDs) on their interaction with a serum supplemented cell medium and their internalization by human cervical carcinoma (HeLa) cells. Zwitterionic QDs showed negligible adsorption of human serum albumin (HSA) selected as a model serum protein, in contrast to similar but negatively charged QDs. The incorporation of zwitterionic QDs by HeLa cells was found to be lower than for negatively charged QDs and for positively charged QDs, for which the uptake yield was largest. Our results suggest that the suppression of protein adsorption, here accomplished by zwitterionic QD surfaces, offers a strategy that allows for reducing the cellular uptake of nanoparticles.112113sciescopu

    Carbohydrate-Lectin Recognition of Sequence-Defined Heteromultivalent Glycooligomers

    No full text
    Multivalency as a key principle in nature has been successfully adopted for the design and synthesis of artificial glycoligands by attaching multiple copies of monosaccharides to a synthetic scaffold. Besides their potential in various applied areas, e.g. as antiviral drugs, for the vaccine development and as novel biosensors, such glycomimetics also allow for a deeper understanding of the fundamental aspects of multivalent binding of both artificial and natural ligands. However, most glycomimetics so far neglect the purposeful arranged heterogeneity of their natural counterparts, thus limiting more detailed insights into the design and synthesis of novel glycomimetics. Therefore, this work presents the synthesis of monodisperse glycooligomers carrying different sugar ligands at well-defined positions along the backbone using for the first time sequential click chemistry and stepwise assembly of functional building blocks on solid support. This approach allows for straightforward access to sequence-defined, multivalent glycooligomers with full control over number, spacing, position, and type of sugar ligand. We demonstrate the synthesis of a set of heteromultivalent oligomers presenting mannose, galactose, and glucose residues. All heteromultivalent structures show surprisingly high affinities toward Concanavalin A lectin receptor in comparison to their homomultivalent analogues presenting the same number of binding ligands. Detailed studies of the ligand/receptor interaction using STD-NMR and 2fFCS indeed indicate a change in binding mechanism for trivalent glycooligomers presenting mannose or combinations of mannose and galactose residues. We find that galactose residues do not participate in the binding to the receptor, but they promote steric shielding of the heteromultivalent glycoligands and thus result in an overall increase in affinity. Furthermore, the introduction of nonbinding ligands seems to suppress receptor clustering of multivalent ligands. Overall these results support the importance of heteromultivalency specifically for the design of novel glycoligands and help to promote a fundamental understanding of multivalent binding modes

    Efficacy of parent-mediated communication-focused treatment in toddlers with autism (PACT) delivered via videoconferencing: A randomised controlled trial study protocol

    No full text
    International audienceIntroduction Intervention in the preschool period is currently recommended for autism spectrum disorder. Therapies delivered by parents are particularly suitable for young children. Preschool Autism Communication Trial (PACT) is a parent-mediated therapy that has shown a significant and sustained impact on autism symptom reduction. However, access to such evidence-based therapies for families is limited due to autism centres located in large urban areas. Using videoconferencing to deliver PACT training to parents may improve accessibility for families living in underserved areas. Methods and analysis This single-blind randomised controlled trial, involving six sites in France, will investigate the efficacy of a telehealth, videoconferencing-based, parent-mediated PACT therapy on autism symptoms, over a 12-month period. It will compare PACT plus treatment as usual (TAU) against TAU only in a cohort of 238 toddlers (119 per group) aged 18-36 months at inclusion and living with their families more than 40 min away from the specialist centres for autism. Primary outcome will include change of overall autism score on the Autism Diagnostic Observation Scale (ADOS) at 12 months. Secondary outcomes will measure change in child skills, child functioning, impact on parents (stress, health, priorities) and implementation characteristics. Repeated measures analyses will be used to test the effect of PACT intervention on the overall ADOS module 1 score over the 12-month study period. Linear mixed models will be used with time, treatment allocation and the interaction between treatment and time as fixed effects and individual variation as random effect. Ethics and dissemination This protocol (V.5, date: 25 October 2019) is approved by the French National Review Board (reference no 2018-A02516-49). The results will be disseminated via peer-reviewed journals Trial registration number NCT04244721

    Temperature: The “Ignored” Factor at the NanoBio Interface

    No full text
    Upon incorporation of nanoparticles (NPs) into the body, they are exposed to biological fluids, and their interaction with the dissolved biomolecules leads to the formation of the so-called protein corona on the surface of the NPs. The composition of the corona plays a crucial role in the biological fate of the NPs. While the effects of various physicochemical parameters on the composition of the corona have been explored in depth, the role of temperature upon its formation has received much less attention. In this work, we have probed the effect of temperature on the protein composition on the surface of a set of NPs with various surface chemistries and electric charges. Our results indicate that the degree of protein coverage and the composition of the adsorbed proteins on the NPs’ surface depend on the temperature at which the protein corona is formed. Also, the uptake of NPs is affected by the temperature. Temperature is, thus, an important parameter that needs to be carefully controlled in quantitative studies of bionano interactions

    Surface Functionalization of Nanoparticles with Polyethylene Glycol: Effects on Protein Adsorption and Cellular Uptake

    No full text
    corecore