51 research outputs found

    Ultrastructural and biochemical analyses of hepatitis C virus-associated host cell membranes.

    Get PDF
    International audienceLike most other positive-strand RNA viruses, hepatitis C virus (HCV) induces changes in the host cell's membranes, resulting in a membranous web. The non-structural proteins of the viral replication complex are thought to be associated with these newly synthesized membranes. We studied this phenomenon, using a Huh7.5 cell clone displaying high levels of replication of a subgenomic replicon of the JFH-1 strain. Electron microscopy of ultrathin sections of these cells revealed the presence of numerous double membrane vesicles (DMVs), resembling those observed for other RNA viruses such as poliovirus and coronavirus. Some sections had more discrete multivesicular units consisting of circular concentric membranes organized into clusters surrounded by a wrapping membrane. These structures were highly specific to HCV as they were not detected in naive Huh7.5 cells. Preparations enriched in these structures were separated from other endoplasmic reticulum-derived membranes by cell cytoplasm homogenization and ultracentrifugation on a sucrose gradient. They were found to contain the non-structural NS3 and NS5A HCV proteins, HCV RNA and LC3-II, a specific marker of autophagic membranes. By analogy to other viral models, HCV may induce DMVs by activating the autophagy pathway. This could represent a strategy to conceal the viral RNA and help the virus to evade double-stranded RNA-triggered host antiviral responses. More detailed characterization of these virus-cell interactions may facilitate the development of new treatments active against HCV and other RNA viruses that are dependent on newly synthesized cellular membranes for replication

    Sequential biogenesis of host cell membrane rearrangements induced by hepatitis C virus infection.: HCV-induced membrane rearrangements

    Get PDF
    International audienceLike most positive-strand RNA viruses, hepatitis C virus (HCV) forms a membrane-associated replication complex consisting of replicating RNA, viral and host proteins anchored to altered cell membranes. We used a combination of qualitative and quantitative electron microscopy (EM), immuno-EM, and the 3D reconstruction of serial EM sections to analyze the host cell membrane alterations induced by HCV. Three different types of membrane alteration were observed: vesicles in clusters (ViCs), contiguous vesicles (CVs), and double-membrane vesicles (DMVs). The main ultrastructural change observed early in infection was the formation of a network of CVs surrounding the lipid droplets. Later stages in the infectious cycle were characterized by a large increase in the number of DMVs, which may be derived from the CVs. These DMVs are thought to constitute the membranous structures harboring the viral replication complexes in which viral replication is firmly and permanently established and to protect the virus against double-stranded RNA-triggered host antiviral responses

    Association of Killer Cell Immunoglobulin-Like Receptor Genes with Hodgkin's Lymphoma in a Familial Study

    Get PDF
    BACKGROUND: Epstein-Barr virus (EBV) is the major environmental factor associated with Hodgkin's lymphoma (HL), a common lymphoma in young adults. Natural killer (NK) cells are key actors of the innate immune response against viruses. The regulation of NK cell function involves activating and inhibitory Killer cell Immunoglobulin-like receptors (KIRs), which are expressed in variable numbers on NK cells. Various viral and virus-related malignant disorders have been associated with the presence/absence of certain KIR genes in case/control studies. We investigated the role of the KIR cluster in HL in a family-based association study. METHODOLOGY: We included 90 families with 90 HL index cases (age 16–35 years) and 255 first-degree relatives (parents and siblings). We developed a procedure for reconstructing full genotypic information (number of gene copies) at each KIR locus from the standard KIR gene content. Out of the 90 collected families, 84 were informative and suitable for further analysis. An association study was then carried out with specific family-based analysis methods on these 84 families. PRINCIPAL FINDINGS: Five KIR genes in strong linkage disequilibrium were found significantly associated with HL. Refined haplotype analysis showed that the association was supported by a dominant protective effect of KIR3DS1 and/or KIR2DS1, both of which are activating receptors. The odds ratios for developing HL in subjects with at least one copy of KIR3DS1 or KIR2DS1 with respect to subjects with neither of these genes were 0.44[95% confidence interval 0.23–0.85] and 0.42[0.21–0.85], respectively. No significant association was found in a tentative replication case/control study of 68 HL cases (age 18–71 years). In the familial study, the protective effect of KIR3DS1/KIR2DS1 tended to be stronger in HL patients with detectable EBV in blood or tumour cells. CONCLUSIONS: This work defines a template for family-based association studies based on full genotypic information for the KIR cluster, and provides the first evidence that activating KIRs can have a protective role in HL

    Proceedings of the Virtual 3rd UK Implementation Science Research Conference : Virtual conference. 16 and 17 July 2020.

    Get PDF

    Ultrastructural and biochemical analyses of cellular membranes associated with the Hepatitis C virus replication complex

    No full text
    Comme pour la plupart des virus Ă  ARN+, le VHC induit des remaniements membranaires appelĂ©s membranous web. Les protĂ©ines non structurales virales formant le complexe de rĂ©plication du virus sont associĂ©es Ă  ces membranes nĂ©osynthĂ©tisĂ©es. La comprĂ©hension de la mise en place de ces membranes cellulaire est encore actuellement mal connue. Afin d’étudier ce phĂ©nomĂšne, nous avons dans un premier temps sĂ©lectionnĂ© des clones cellulaires Huh7.5 hĂ©bergeants un rĂ©plicon sous-gĂ©nomiquedu virus. Nous avons ainsi pu mettre en Ă©vidence la prĂ©sence d’un rĂ©seau multivĂ©siculaire semblant provenir de l’induction de mĂ©canismes d’autophagie. Plus rĂ©cemment l’utilisation du modĂšle de propagation du virus complet nous a permis de mieux caractĂ©riser ce rĂ©seau multivĂ©siculaire en dĂ©terminant trois sous rĂ©seaux vĂ©siculaires structuralement diffĂ©rents. L’analyse de cette Ă©tude est effectuĂ©e principalement par microscopie Ă©lectronique avec des techniques innovantes tels que la reconstruction tridimensionnelle et des immunogolds.As other RNA viruses, HCV induces membrane alterations termed membranous web and its nonstructural proteins forming the viral replication complex are associated to these neo-synthesized membranes. The mechanism underlying these host cell membranes alterations is still currently unknown. To investigate this mechanism, we initially selected Huh7.5 cells clones harbouring a HCV subgenomic replicon. We were able to demonstrate the presence of a multivesicular network apparently linked to the autophagy induction mechanisms. More recently, using the cell culture-adapted HCVsystem, we better characterized this network by determining three multivesiculars vesicles structurally different subnets. This study was carried out mainly by performing electron microscopy observations,with using innovative techniques such as three-dimensional reconstruction and immunogold

    Zika virus infection: an update

    No full text
    International audienceSince the ZIKV outbreak in Brazil in 2015, the scientific community has joined efforts to gather more information on the epidemiology, clinical features and pathogenicity of the virus. Here, we summarize the most important advances made recently and discuss promising, innovative approaches to understand and control ZIKV infection

    Zika virus infection : an update

    No full text
    Since the ZIKV outbreak in Brazil in 2015, the scientific community has joined efforts to gather more information on the epidemiology, clinical features and pathogenicity of the virus. Here, we summarize the most important advances made recently and discuss promising, innovative approaches to understand and control ZIKV infection

    Human host genetics and susceptibility to ZIKV infection

    No full text
    International audienceManaging emerging infectious diseases is a current challenge in the fields of microbiology and epidemiology. Indeed, among other environmental and human-related factors, climate change and global warming favor the emergence of new pathogens. The recent Zika virus (ZIKV) epidemic, of which the large and rapid spread surprised the scientific community, is a reminder of the importance to study viruses currently responsible for sporadic infections. Increasing our knowledge of key factors involved in emerging infections is essential to implement specific monitoring that can be oriented according to the pathogen, targeted population, or at-risk environment. Recent technological developments, such as high-throughput sequencing, genome-wide association studies and CRISPR screenings have allowed the identification of human single nucleotide polymorphisms (SNPs) involved in infectious disease outcome. This review focuses on the human genetic host factors that have been identified and shown to be associated with the pathogenesis of ZIKV infection and candidate SNP targets

    The effects of mosquito saliva on dengue virus infectivity in humans.

    No full text
    International audienceArboviruses such as Dengue, Chikungunya, and Zika viruses represent a major public health problem due to globalization and propagation of susceptible vectors worldwide. Arthropod vector-derived salivary factors have the capacity to modulate human cells function by enhancing or suppressing viral replication and, therefore, modify the establishment of local and systemic viral infection. Here, we discuss how mosquito saliva may interfere with Dengue virus (DENV) infection in humans. Identification of saliva factors that enhance infectivity will allow the production of vector-based vaccines and therapeutics that would interfere with viral transmission by targeting arthropod saliva components. Understanding the role of salivary proteins in DENV transmission will provide tools to control not only Dengue but also other arboviral diseases transmitted by the same vectors

    Dynamic simulation of concentrating solar plants

    Get PDF
    The discontinuous nature of the solar power forces to study the dynamic behavior of solar plants to characterize their operations, to deepen their process understanding and to improve the performance and maintenance. The present paper described the dynamic simulation of concentrating solar plants with the aim to define a reasonable simplified layout as well as to highlight the main issues to characterize the process dynamics of these systems
    • 

    corecore