34 research outputs found

    How CD40L reverse signaling regulates axon and dendrite growth

    Get PDF
    CD40-activated CD40L reverse signaling is a major physiological regulator of axon and dendrite growth from developing hippocampal pyramidal neurons. Here we have studied how CD40L-mediated reverse signaling promotes the growth of these processes. Cultures of hippocampal pyramidal neurons were established from Cd40−/− mouse embryos to eliminate endogenous CD40/CD40L signaling, and CD40L reverse signaling was stimulated by a CD40-Fc chimera. CD40L reverse signaling increased phosphorylation and hence activation of proteins in the PKC, ERK, and JNK signaling pathways. Pharmacological activators and inhibitors of these pathways revealed that whereas activation of JNK inhibited growth, activation of PKC and ERK1/ERK2 enhanced growth. Experiments using combinations of pharmacological reagents revealed that these signaling pathways regulate growth by functioning as an interconnected and interdependent network rather than acting in a simple linear sequence. Immunoprecipitation studies suggested that stimulation of CD40L reverse signaling generated a receptor complex comprising CD40L, PKCβ, and the Syk tyrosine kinase. Our studies have begun to elucidate the molecular network and interactions that promote axon and dendrite growth from developing hippocampal neurons following activation of CD40L reverse signaling

    CD40L Reverse signaling influences dendrite spine morphology and expression of PSD-95 and Rho small GTPases

    Get PDF
    CD40-activated CD40L reverse signaling is a major physiological regulator of neural process growth from many kinds of developing neurons. Here we have investigated whether CD40L-reverse signaling also influences dendrite spine number and morphology in striatal medium spiny neurons (MSNs). Golgi preparations revealed no differences in the spine density, but because the dendrite arbors of MSNs were larger and branched in Cd40–/– mice, the total number of spines was greater in Cd40–/– mice. We also detected more mature spines compared with wild-type littermates. Western blot revealed that MSN cultures from Cd40–/– mice had significantly less PSD-95 and there were changes in RhoA/B/C and Cdc42. Immunocytochemistry revealed that PSD-95 was clustered in spines in Cd40–/– neurons compared with more diffuse labeling in Cd40+/+ neurons. Activation of CD40L-reverse signaling with CD40-Fc prevented the changes observed in Cd40–/– cultures. Our findings suggest that CD40L-reverse signaling influences dendrite spine morphology and related protein expression and distribution

    Signalling pathways mediating the effects of CD40-activated CD40L reverse signalling on inhibitory medium spiny neuron Neurite growth

    Get PDF
    CD40-activated CD40L-mediated reverse signalling is a major physiological regulator of neurite growth from excitatory and inhibitory neurons in the developing central nervous system (CNS). Whereas in excitatory pyramidal neurons, CD40L reverse signalling promotes the growth and elaboration of dendrites and axons, in inhibitory GABAergic striatal medium spiny neurons (MSNs), it restricts neurite growth and branching. In pyramidal neurons, we previously reported that CD40L reverse signalling activates an interconnected and interdependent signalling network involving protein kinase C (PKC), extracellular regulated kinases 1 and 2 (ERK1/2), and c-Jun N-terminal kinase (JNK) signalling pathways that regulates dendrite and axon growth. Here, we have studied whether these signalling pathways also influence neurite growth from striatal inhibitory MSNs. To unequivocally activate CD40L reverse signalling, we treated MSN cultures from CD40-deficient mice with CD40-Fc. Here, we report that activation of CD40L reverse signalling in these cultures also increased the phosphorylation of PKC, ERK1/2, and JNK. Using pharmacological activators and inhibitors of these signalling pathways singularly and in combination, we have shown that, as in pyramidal neurons, these signalling pathways work in an interconnected and interdependent network to regulate the neurite growth, but their functions, relationships, and interdependencies are different from those observed in pyramidal neurons. Furthermore, immunoprecipitation studies showed that stimulation of CD40L reverse signalling recruits the catalytic fragment of Syk tyrosine kinase, but in contrast to pyramidal neurons, PKC does not participate in this recruitment. Our findings show that distinctive networks of three signalling pathways mediate the opposite effects of CD40L reverse signalling on neurite growth in excitatory and inhibitory neurons

    Staging Anti-Inflammatory Therapy in Alzheimer's Disease

    Get PDF
    The use of non-steroidal anti-inflammatory drugs (NSAIDs) in Alzheimer's disease (AD) is controversial because conclusions from numerous epidemiological studies reporting delayed onset of AD in NSAID users have not been corroborated in clinical trials. The purpose of this personal view is to revise the case for NSAIDs in AD therapeutics in light of: (i) the last report from the only primary prevention trial in AD, ADAPT, which, although incomplete, points to significant protection in long-term naproxen users, and (ii) the recently proposed dynamic model of AD evolution. The model contends that there is a clinical silent phase in AD that can last up to 20 years, the duration depending on life style habits, genetic factors, or cognitive reserve. The failure of many purported disease-modifying drugs in AD clinical trials is forcing the view that treatments will only be efficacious if administered pre-clinically. Here we will argue that NSAIDs failed in clinical trials because they are disease-modifying drugs, and they should be administered in early stages of the disease. A complete prevention trial in cognitively normal individuals is thus called for. Further, the shift of anti-inflammatory treatment to early stages uncovers a knowledge void about the targets of NSAIDs in asymptomatic individuals. AD researchers have mostly relied on post-mortem analysis of Aβ plaque-laden brains from demented patients or animal models, thus drawing conclusions about AD pathogenesis based on late symptoms. We will discuss evidence in support that defective, not excessive, inflammation underlies AD pathogenesis, that NSAIDs are multifunctional drugs acting on inflammatory and non-inflammatory targets, and that astrocytes and microglia may play differing roles in disease progression, with an emphasis of ApoEε4 as a key, undervalued target of NSAIDs. According to a meta-analysis of epidemiological data, NSAIDs afford an average protection of 58%. If this figure is true, and translated into patient numbers, NSAID treatment may revive as a worth pursuing strategy to significantly reduce the socio-economical burden imposed by AD

    Amyloid-β reduces the expression of neuronal FAIM-L, thereby shifting the inflammatory response mediated by TNFα from neuronal protection to death

    Get PDF
    The brains of patients with Alzheimer's disease (AD) present elevated levels of tumor necrosis factor-α (TNFα), a cytokine that has a dual function in neuronal cells. On one hand, TNFα can activate neuronal apoptosis, and on the other hand, it can protect these cells against amyloid-β (Aβ) toxicity. Given the dual behavior of this molecule, there is some controversy regarding its contribution to the pathogenesis of AD. Here we examined the relevance of the long form of Fas apoptotic inhibitory molecule (FAIM) protein, FAIM-L, in regulating the dual function of TNFα. We detected that FAIM-L was reduced in the hippocampi of patients with AD. We also observed that the entorhinal and hippocampal cortex of a mouse model of AD (PS1M146LxAPP751sl) showed a reduction in this protein before the onset of neurodegeneration. Notably, cultured neurons treated with the cortical soluble fractions of these animals showed a decrease in endogenous FAIM-L, an effect that is mimicked by the treatment with Aβ-derived diffusible ligands (ADDLs). The reduction in the expression of FAIM-L is associated with the progression of the neurodegeneration by changing the inflammatory response mediated by TNFα in neurons. In this sense, we also demonstrate that the protection afforded by TNFα against Aβ toxicity ceases when endogenous FAIM-L is reduced by short hairpin RNA (shRNA) or by treatment with ADDLs. All together, these results support the notion that levels of FAIM-L contribute to determine the protective or deleterious effect of TNFα in neuronal cell

    Detection of Heteromers Formed by Cannabinoid CB 1

    Get PDF
    Functional interactions in signaling occur between dopamine D2 (D2R) and cannabinoid CB1 (CB1R) receptors, between CB1R and adenosine A2A (A2AR) receptors, and between D2R and A2AR. Furthermore, direct molecular interactions have been reported for the pairs CB1R-D2R, A2AR-D2R, and CB1R-A2AR. Here a combination of bimolecular fluorescence complementation and bioluminescence energy transfer techniques was used to identify the occurrence of D2R-CB1R-A2AR hetero-oligomers in living cells

    TNFα sensitizes neuroblastoma cells to FasL-, cisplatin- and etoposide-induced cell death by NF-κB-mediated expression of Fas

    Get PDF
    Background Patients with high-risk neuroblastoma (NBL) tumors have a high mortality rate. Consequently, there is an urgent need for the development of new treatments for this condition. Targeting death receptor signaling has been proposed as an alternative to standard chemo- and radio-therapies in various tumors. In NBL, this therapeutic strategy has been largely disregarded, possibly because ~50-70% of all human NBLs are characterized by caspase-8 silencing. However, the expression of caspase-8 is detected in a significant group of NBL patients, and they could therefore benefit from treatments that induce cell death through death receptor activation. Given that cytokines, such as TNFα, are able to upregulate Fas expression, we sought to address the therapeutic relevance of co-treatment with TNFα and FasL in NBL. Methods For the purpose of the study we used a set of eight NBL cell lines. Here we explore the cell death induced by TNFα, FasL, cisplatin, and etoposide, or a combination thereof by Hoechst staining and calcein viability assay. Further assessment of the signaling pathways involved was performed by caspase activity assays and Western blot experiments. Characterization of Fas expression levels was achieved by qRT-PCR, cell surface biotinylation assays, and cytometry. Results We have found that TNFα is able to increase FasL-induced cell death by a mechanism that involves the NF-κB-mediated induction of the Fas receptor. Moreover, TNFα sensitized NBL cells to DNA-damaging agents (i.e. cisplatin and etoposide) that induce the expression of FasL. Priming to FasL-, cisplatin-, and etoposide-induced cell death could only be achieved in NBLs that display TNFα-induced upregulation of Fas. Further analysis denotes that the high degree of heterogeneity between NBLs is also manifested in Fas expression and modulation thereof by TNFα. Conclusions In summary, our findings reveal that TNFα sensitizes NBL cells to FasL-induced cell death by NF-κB-mediated upregulation of Fas and unveil a new mechanism through which TNFα enhances the efficacy of currently used NBL treatments, cisplatin and etoposide

    Amyloid- β reduces the expression of neuronal FAIM-L, thereby shifting the inflammatory response mediated by TNF α from neuronal protection to death

    Get PDF
    The brains of patients with Alzheimer's disease (AD) present elevated levels of tumor necrosis factor- α (TNF α), a cytokine that has a dual function in neuronal cells. On one hand, TNF α can activate neuronal apoptosis, and on the other hand, it can protect these cells against amyloid- β (A β) toxicity. Given the dual behavior of this molecule, there is some controversy regarding its contribution to the pathogenesis of AD. Here we examined the relevance of the long form of Fas apoptotic inhibitory molecule (FAIM) protein, FAIM-L, in regulating the dual function of TNF α. We detected that FAIM-L was reduced in the hippocampi of patients with AD. We also observed that the entorhinal and hippocampal cortex of a mouse model of AD (PS1xAPP) showed a reduction in this protein before the onset of neurodegeneration. Notably, cultured neurons treated with the cortical soluble fractions of these animals showed a decrease in endogenous FAIM-L, an effect that is mimicked by the treatment with A β -derived diffusible ligands (ADDLs). The reduction in the expression of FAIM-L is associated with the progression of the neurodegeneration by changing the inflammatory response mediated by TNF α in neurons. In this sense, we also demonstrate that the protection afforded by TNF α against A β toxicity ceases when endogenous FAIM-L is reduced by short hairpin RNA (shRNA) or by treatment with ADDLs. All together, these results support the notion that levels of FAIM-L contribute to determine the protective or deleterious effect of TNF α in neuronal cells

    FAIM-L Is an IAP-Binding Protein That Inhibits XIAP Ubiquitinylation and Protects from Fas-Induced Apoptosis

    Get PDF
    The neuronal long isoform of Fas Apoptotic Inhibitory Molecule (FAIM-L) protects from death receptor (DR)-induced apoptosis, yet its mechanism of protection remains unknown. Here, we show that FAIM-L protects rat neuronal Type II cells from Fas-induced apoptosis. XIAP has previously emerged as a molecular discriminator that is upregulated in Type II and downregulated in Type I apoptotic signaling. We demonstrate that FAIM-L requires sustained endogenous levels of XIAP to protect Type II cells as well as murine cortical neurons from Fas-induced apoptosis. FAIM-L interacts with the BIR2 domain of XIAP through an IAP-binding motif, the mutation of which impairs the antiapoptotic function of FAIM-L. Finally, we report that FAIM-L inhibits XIAP auto-ubiquitinylation and maintains its stability, thus conferring protection from apoptosis. Our results bring new understanding of the regulation of endogenous XIAP by a DR antagonist, pointing out at FAIM-L as a promising therapeutic tool for protection from apoptosis in pathological situations where XIAP levels are decreased.This work was funded by the Spanish Government Ministerio de Sanidad y Consumo (Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, CB06/05/1104 to J.X.C.), Ministerio de Economía y Competitividad (SAF2010–19953 to J.X.C.; SAF2012–31485 to V.J.Y.), Instituto de Salud Carlos III (CP11/00052 to M.F.S.), and the Generalitat de Catalunya (Suport als Grups de Recerca Consolidats 2009SGR346). F.M.-F. and L.P.-F. are supported by postgraduate fellowships from the Spanish Government Ministerio de Educación y Ciencia. J.U. is supported by a postgraduate fellowship from the Generalitat de Catalunya. R.S.M. and V.J.Y. were under the Juan de la Cierva and the Ramon y Cajal programs, respectively, from the Ministerio de Educación y Ciencia (Spain), cofinanced by the European Social Fund. M.F.S. is under the Miguel Servet program from the Instituto de Salud Carlos III and cofinanced by the European Regional Development Fund
    corecore