182 research outputs found
Neuropathology of animal prion diseases
Transmissible Spongiform Encephalopathies (TSEs) or prion diseases are a fatal group of infectious, inherited and spontaneous neurodegenerative diseases affecting human and animals. They are caused by the conversion of cellular prion protein (PrPC) into a misfolded pathological isoform (PrPSc or prion- proteinaceous infectious particle) that self-propagates by conformational conversion of PrPC. Yet by an unknown mechanism, PrPC can fold into different PrPSc conformers that may result in different prion strains that display specific disease phenotype (incubation time, clinical signs and lesion profile). Although the pathways for neurodegeneration as well as the involvement of brain inflammation in these diseases are not well understood, the spongiform changes, neuronal loss, gliosis and accumulation of PrPSc are the characteristic neuropathological lesions. Scrapie affecting small ruminants was the first identified TSE and has been considered the archetype of prion diseases, though atypical and new animal prion diseases continue to emerge highlighting the importance to investigate the lesion profile in naturally affected animals. In this report, we review the neuropathology and the neuroinflammation of animal prion diseases in natural hosts from scrapie, going through the zoonotic bovine spongiform encephalopathy (BSE), the chronic wasting disease (CWD) to the newly identified camel prion disease (CPD).info:eu-repo/semantics/publishedVersio
Chronic wasting disease risk assessment in Portugal: analysis of variability and genetic structure of the Portuguese roe deer population
Among the Transmissible Spongiform
Encephalopathies, Chronic Wasting Disease (CWD) in
cervids is now the rising concern in wildlife within
Europe after the first case detected in Norway in
2016. CWD shows a notable horizontal transmission,
affecting both free-ranging and captive cervids.
Furthermore, several genetic variants in the Prion
Protein (PRNP) gene coding sequence of the cervid
were identified, which increase the susceptibility to
the disease.This work was supported by the project
WastingPrionRisk [POCI-01-0145-FEDER-029,947/
PTDC/CVT-CVT/29947/2017] funded by the
Portuguese Foundation for Science and Technology
(FCT). FCT PhD grant [SFRH/BD/146961/2019]
financed by FCT through FSE (Fundo Social
Europeu). This work was also supported by national
funds [UIDB/CVT/00772/2020], [LA/P/0059/2020] and
[UIDB/04033/2020] by FCT.info:eu-repo/semantics/publishedVersio
Soil water dynamics and litter production in eucalypt and native vegetation in southeastern Brazil
High productivity of eucalypt plantations is the result of advances in research that have led to gradual improvements in intensive silvicultural technology. High productivity notwithstanding, eucalypt plantations remain the focus of environmental concerns. Our study aimed to compare the soil water regime, litter fall and nutrients dynamics either in a fragment of native forest or in an adjacent stand of growing eucalypt. We took field measurements during the first three years of eucalypt plantation in a sandy soil in the southeastern region of Brazil. Soil moisture and internal drainage were higher during the early stages of growth of the eucalypt stand, as compared with native vegetation. However, one and a half years after planting, available soil water was similar in both vegetations. Higher water availability under the eucalypt stand during the first year occurs because of silvicultural operations (soil preparation and weed control) and the small size of eucalypt trees; these factors increase water infiltration and decrease transpiration. Total leaf fall, over the study period, was similar for both ecosystems; however, differences were observed in the winter and early spring of 2010. The transfer of nutrients to soil by leaf fall was similar except for N and S, which was higher in native vegetation. Nitrogen concentration in the soil solution was higher in native vegetation, but K was higher under the eucalypt stand, mainly to a depth of up to 0.2 m
NEOTROPICAL XENARTHRANS: a data set of occurrence of xenarthran species in the Neotropics
Xenarthrans – anteaters, sloths, and armadillos – have essential functions for ecosystem maintenance, such as insect control and nutrient cycling, playing key roles as ecosystem engineers. Because of habitat loss and fragmentation, hunting pressure, and conflicts with 24 domestic dogs, these species have been threatened locally, regionally, or even across their full distribution ranges. The Neotropics harbor 21 species of armadillos, ten anteaters, and six sloths. Our dataset includes the families Chlamyphoridae (13), Dasypodidae (7), Myrmecophagidae (3), Bradypodidae (4), and Megalonychidae (2). We have no occurrence data on Dasypus pilosus (Dasypodidae). Regarding Cyclopedidae, until recently, only one species was recognized, but new genetic studies have revealed that the group is represented by seven species. In this data-paper, we compiled a total of 42,528 records of 31 species, represented by occurrence and quantitative data, totaling 24,847 unique georeferenced records. The geographic range is from the south of the USA, Mexico, and Caribbean countries at the northern portion of the Neotropics, to its austral distribution in Argentina, Paraguay, Chile, and Uruguay. Regarding anteaters, Myrmecophaga tridactyla has the most records (n=5,941), and Cyclopes sp. has the fewest (n=240). The armadillo species with the most data is Dasypus novemcinctus (n=11,588), and the least recorded for Calyptophractus retusus (n=33). With regards to sloth species, Bradypus variegatus has the most records (n=962), and Bradypus pygmaeus has the fewest (n=12). Our main objective with Neotropical Xenarthrans is to make occurrence and quantitative data available to facilitate more ecological research, particularly if we integrate the xenarthran data with other datasets of Neotropical Series which will become available very soon (i.e. Neotropical Carnivores, Neotropical Invasive Mammals, and Neotropical Hunters and Dogs). Therefore, studies on trophic cascades, hunting pressure, habitat loss, fragmentation effects, species invasion, and climate change effects will be possible with the Neotropical Xenarthrans dataset
- …