129 research outputs found

    Genetic Indicators of Drug Resistance in the Highly Repetitive Genome of Trichomonas vaginalis

    Get PDF
    Trichomonas vaginalis, the most common nonviral sexually transmitted parasite, causes ∼283 million trichomoniasis infections annually and is associated with pregnancy complications and increased risk of HIV-1 acquisition. The antimicrobial drug metronidazole is used for treatment, but in a fraction of clinical cases, the parasites can become resistant to this drug. We undertook sequencing of multiple clinical isolates and lab derived lines to identify genetic markers and mechanisms of metronidazole resistance. Reduced representation genome sequencing of ∼100 T. vaginalis clinical isolates identified 3,923 SNP markers and presence of a bipartite population structure. Linkage disequilibrium was found to decay rapidly, suggesting genome-wide recombination and the feasibility of genetic association studies in the parasite. We identified 72 SNPs associated with metronidazole resistance, and a comparison of SNPs within several lab-derived resistant lines revealed an overlap with the clinically resistant isolates. We identified SNPs in genes for which no function has yet been assigned, as well as in functionally-characterized genes relevant to drug resistance (e.g., pyruvate:ferredoxin oxidoreductase). Transcription profiles of resistant strains showed common changes in genes involved in drug activation (e.g., flavin reductase), accumulation (e.g., multidrug resistance pump), and detoxification (e.g., nitroreductase). Finally, we identified convergent genetic changes in lab-derived resistant lines of Tritrichomonas foetus, a distantly related species that causes venereal disease in cattle. Shared genetic changes within and between T. vaginalis and Tr. foetus parasites suggest conservation of the pathways through which adaptation has occurred. These findings extend our knowledge of drug resistance in the parasite, providing a panel of markers that can be used as a diagnostic tool

    The myth of meeting needs revisited: the case of Educational research

    Get PDF
    publication-status: Publishedtypes: ArticleOur primary objective in this paper is revisit a debate that was articulated 25 years ago in this journal in which it was argued that the idea of meeting needs in adult and continuing education is a myth. We extend the original analysis of need and apply it to the case of educational research. We look at the policy context, which has, in the intervening period, increasingly reflected the neo-liberal emphasis upon accountability and measurement. Taking into account the discussion stimulated by Hargreaves and followed through by Tooley on the supposed ‘poverty’ of educational research in the UK, we show how the discourse of need has been sustained. Using the Transforming Learning Cultures (TLC) project in the Teaching and Learning Research Programme (TLRP) as an exemplar, we show that, despite the constraints that are imposed upon researchers by the funding and accountability frameworks of the Economic and Social Research Council (ESRC), the researchers on that project have nonetheless made significant and important contributions in the field that they have researched. By way of outcomes, we argue for an approach to the commissioning of educational research from bodies such as the ESRC that will allow researchers to frame their projects in ways that do not meet current prescriptions. In conclusion, we suggest that what is needed is a greater level of trust which will allow researchers to set the research agenda themselves, rather than be driven by the needs identified and specified by policymakers. Introduction In this paper we revisit a debate that was first articulated 25 years ago in this journal, where it was argued that the idea of meeting needs in adult and continuing education was a myth (Armstrong 1982). Intending to challenge the liberal ideologies that subscribed to, and supported the idea that needs have an objective reality of their own, the claim of the original paper was that needs are manufactured political constructions. Whilst there appeared to be some considerable support for the critique at the time, it did not have the effect on the academy that initial indications had suggested. Writing about recent 14–19 education policy in the UK, Lumby and Wilson (2003) suggest: Robert Law

    Cerebral arteriopathy associated with heterozygous variants in the casitas B-lineage lymphoma gene

    Get PDF
    Objective: To report a series of patients with cerebral arteriopathy associated with heterozygous variants in the casitas B-lineage lymphoma (CBL) gene and examine the functional role of the identified mutant Cbl protein. We hypothesized that mutated Cbl fails to act as a negative regulator of the RAS-mitogen-activated protein kinases (MAPK) signaling pathway, resulting in enhanced vascular fibroblast proliferation and migration and enhanced angiogenesis and collateral vessel formation. Methods: We performed whole-exome sequencing in 11 separate families referred to Great Ormond Street Hospital, London, with suspected genetic cause for clinical presentation with severe progressive cerebral arteriopathy. Results: We identified heterozygous variants in the CBL gene in 5 affected cases from 3 families. We show that impaired CBL-mediated degradation of cell surface tyrosine kinase receptors and dysregulated intracellular signaling through the RAS-MAPK pathway contribute to the pathogenesis of the observed arteriopathy. Mutated CBL failed to control the angiogenic signal relay of vascular endothelial growth factor receptor 2, leading to prolonged tyrosine kinase signaling, thus driving angiogenesis and collateral vessel formation. Mutant Cbl promoted myofibroblast migration and proliferation contributing to vascular occlusive disease; these effects were abrogated following treatment with a RAF-RAS-MAPK pathway inhibitor. Conclusions: We provide a possible mechanism for the arteriopathy associated with heterozygous CBL variants. Identification of the key role for the RAS-MAPK pathway in CBL-mediated cerebral arteriopathy could facilitate identification of novel or repurposed druggable targets for treating these patients and may also provide therapeutic clues for other cerebral arteriopathies.This article is freely available via Open Access. Click on the Publisher URL to access it via the publisher's site.Y. Hong was supported for this work by Versus Arthritis (grant 21791) and Rosetrees Trust (grant A1700). D. Eleftheriou was supported by Versus Arthritis (grants 20164 and 21593). A. Keylock was supported by a BHF PhD studentship. B. Jensen is supported by a GOSH Children’s Charity grant (CP_RSRCH_003). P.A. Brogan and D. Eleftheriou also acknowledge support from Great Ormond Street Hospital Children’s Charity. All research at Great Ormond Street Hospital NHS Foundation Trust and UCL Great Ormond Street Institute of Child Health is made possible by the NIHR Great Ormond Street Hospital Biomedical Research Centre. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, or the Department of Health.accepted version (12 month embargo

    PUF60 variants cause a syndrome of ID, short stature, microcephaly, coloboma, craniofacial, cardiac, renal and spinal features.

    Get PDF
    PUF60 encodes a nucleic acid-binding protein, a component of multimeric complexes regulating RNA splicing and transcription. In 2013, patients with microdeletions of chromosome 8q24.3 including PUF60 were found to have developmental delay, microcephaly, craniofacial, renal and cardiac defects. Very similar phenotypes have been described in six patients with variants in PUF60, suggesting that it underlies the syndrome. We report 12 additional patients with PUF60 variants who were ascertained using exome sequencing: six through the Deciphering Developmental Disorders Study and six through similar projects. Detailed phenotypic analysis of all patients was undertaken. All 12 patients had de novo heterozygous PUF60 variants on exome analysis, each confirmed by Sanger sequencing: four frameshift variants resulting in premature stop codons, three missense variants that clustered within the RNA recognition motif of PUF60 and five essential splice-site (ESS) variant. Analysis of cDNA from a fibroblast cell line derived from one of the patients with an ESS variants revealed aberrant splicing. The consistent feature was developmental delay and most patients had short stature. The phenotypic variability was striking; however, we observed similarities including spinal segmentation anomalies, congenital heart disease, ocular colobomata, hand anomalies and (in two patients) unilateral renal agenesis/horseshoe kidney. Characteristic facial features included micrognathia, a thin upper lip and long philtrum, narrow almond-shaped palpebral fissures, synophrys, flared eyebrows and facial hypertrichosis. Heterozygote loss-of-function variants in PUF60 cause a phenotype comprising growth/developmental delay and craniofacial, cardiac, renal, ocular and spinal anomalies, adding to disorders of human development resulting from aberrant RNA processing/spliceosomal function

    The Reference Site Collaborative Network of the European Innovation Partnership on Active and Healthy Ageing

    Get PDF

    Milk: a postnatal imprinting system stabilizing FoxP3 expression and regulatory T cell differentiation

    Full text link
    corecore