6,449 research outputs found
Cyclical patterns and structural changes in the Louisville area economy since 1990
Business cycles ; Regional economics ; Federal Reserve District, 8th
Project RISE: Recognizing Industrial Smoke Emissions
Industrial smoke emissions pose a significant concern to human health. Prior
works have shown that using Computer Vision (CV) techniques to identify smoke
as visual evidence can influence the attitude of regulators and empower
citizens to pursue environmental justice. However, existing datasets are not of
sufficient quality nor quantity to train the robust CV models needed to support
air quality advocacy. We introduce RISE, the first large-scale video dataset
for Recognizing Industrial Smoke Emissions. We adopted a citizen science
approach to collaborate with local community members to annotate whether a
video clip has smoke emissions. Our dataset contains 12,567 clips from 19
distinct views from cameras that monitored three industrial facilities. These
daytime clips span 30 days over two years, including all four seasons. We ran
experiments using deep neural networks to establish a strong performance
baseline and reveal smoke recognition challenges. Our survey study discussed
community feedback, and our data analysis displayed opportunities for
integrating citizen scientists and crowd workers into the application of
Artificial Intelligence for social good.Comment: Technical repor
A mammalian Wnt5a-Ror2-Vangl2 axis controls the cytoskeleton and confers cellular properties required for alveologenesis.
Alveolar formation increases the surface area for gas-exchange and is key to the physiological function of the lung. Alveolar epithelial cells, myofibroblasts and endothelial cells undergo coordinated morphogenesis to generate epithelial folds (secondary septa) to form alveoli. A mechanistic understanding of alveologenesis remains incomplete. We found that the planar cell polarity (PCP) pathway is required in alveolar epithelial cells and myofibroblasts for alveologenesis in mammals. Our studies uncovered a Wnt5a-Ror2-Vangl2 cascade that endows cellular properties and novel mechanisms of alveologenesis. This includes PDGF secretion from alveolar type I and type II cells, cell shape changes of type I cells and migration of myofibroblasts. All these cellular properties are conferred by changes in the cytoskeleton and represent a new facet of PCP function. These results extend our current model of PCP signaling from polarizing a field of epithelial cells to conferring new properties at subcellular levels to regulate collective cell behavior
Single integrated device for optical CDMA code processing in dual-code environment
We report on the design, fabrication and performance of a matching integrated optical CDMA encoder-decoder pair based on holographic Bragg reflector technology. Simultaneous encoding/decoding operation of two multiple wavelength-hopping time-spreading codes was successfully demonstrated and shown to support two error-free OCDMA links at OC-24. A double-pass scheme was employed in the devices to enable the use of longer code length
Residential solar air conditioning: Energy and Exergy analyses of an ammonia-water absorption cooling system
Large scale heat-driven absorption cooling systems are available in the marketplace for industrial applications but the concept of a solar driven absorption chiller for air-conditioning applications is relatively new. Absorption chillers have a lower efficiency than compression refrigeration systems, when used for small scale applications and this restrains the absorption cooling system from air conditioning applications in residential buildings. The potential of a solar driven ammonia-water absorption chiller for residential air conditioning application is discussed and analyzed in this paper. A thermodynamic model has been developed based on a 10 kW air cooled ammonia-water absorption chiller driven by solar thermal energy. Both energy and exergy analyses have been conducted to evaluate the performance of this residential scale cooling system. The analyses uncovered that the absorber is where the most exergy loss occurs (63%) followed by the generator (13%) and the condenser (11%). Furthermore, the exergy loss of the condenser and absorber greatly increase with temperature, the generator less so, and the exergy loss in the evaporator is the least sensitive to increasing temperature
- …
