120 research outputs found

    Is enough oxygen too much?

    Get PDF
    Human cells require O2 for their energy supply, and critical illness can threaten the efficient delivery of O2 in accordance with tissue metabolic needs. In the accompanying article, Martin and colleagues point out that hypoxia is a normal and well-tolerated stress during embryonic development. A better understanding of how fetal cells survive these conditions and how adult cells adapt to high altitude exposure may provide insight into how these mechanisms might be engaged in the treatment of hypoxemic patients. They suggest that 'permissive hypoxia' represents a therapeutic possibility. But before we turn down the inspired O2 levels we should consider the broader effects of hypoxia on tissue repair in critical illness

    NDUFS4 Regulates Cristae Remodeling in Diabetic Kidney Disease

    Get PDF
    The mitochondrial electron transport chain (ETC) is a highly adaptive process to meet metabolic demands of the cell, and its dysregulation has been associated with diverse clinical pathologies. However, the role and nature of impaired ETC in kidney diseases remains poorly understood. Here, we generated diabetic mice with podocyte-specific overexpression of Ndufs4, an accessory subunit of mitochondrial complex I, as a model to investigate the role of ETC integrity in diabetic kidney disease (DKD). We find that these conditional mice exhibit significant improvements in cristae morphology, mitochondrial dynamics, and albuminuria. By coupling proximity labeling with super-resolution imaging, we also identify the role of cristae shaping proteins in linking NDUFS4 with improved cristae morphology. Taken together, we discover the central role of NDUFS4 as a powerful regulator of cristae remodeling, respiratory supercomplexes assembly, and mitochondrial ultrastructur

    Disruption of mitochondrial complex I induces progressive parkinsonism

    Get PDF
    Loss of functional mitochondrial complex I (MCI) in the dopaminergic neurons of the substantia nigra is a hallmark of Parkinson’s disease1. Yet, whether this change contributes to Parkinson’s disease pathogenesis is unclear2. Here we used intersectional genetics to disrupt the function of MCI in mouse dopaminergic neurons. Disruption of MCI induced a Warburg-like shift in metabolism that enabled neuronal survival, but triggered a progressive loss of the dopaminergic phenotype that was first evident in nigrostriatal axons. This axonal deficit was accompanied by motor learning and fine motor deficits, but not by clear levodopa-responsive parkinsonism—which emerged only after the later loss of dopamine release in the substantia nigra. Thus, MCI dysfunction alone is sufficient to cause progressive, human-like parkinsonism in which the loss of nigral dopamine release makes a critical contribution to motor dysfunction, contrary to the current Parkinson’s disease paradigm.Electron microscopy tissue processing and imaging was performed at the Northwestern University Center for Advanced Microscopy, supported by NCI CCSG P30 CA060553 awarded to the Robert H. Lurie Comprehensive Cancer Center. This study was supported by grants from the Michael J. Fox Foundation (to D.J.S.), the JPB Foundation (to D.J.S.), the IDP Foundation (to D.J.S.), the Flanagan Fellowship (to P.G.-R.) and the European Research Council ERC Advanced Grant PRJ201502629 (to J.L.-B.)

    Mitochondria Regulate Proliferation in Adult Cardiac Myocytes

    Get PDF
    Newborn mammalian cardiomyocytes quickly transition from a fetal to an adult phenotype that utilizes mitochondrial oxidative phosphorylation but loses mitotic capacity. We tested whether forced reversal of adult cardiomyocytes back to a fetal glycolytic phenotype would restore proliferative capacity. We deleted Uqcrfs1 (mitochondrial Rieske iron-sulfur protein, RISP) in hearts of adult mice. As RISP protein decreased, heart mitochondrial function declined, and glucose utilization increased. Simultaneously, the hearts underwent hyperplastic remodeling during which cardiomyocyte number doubled without cellular hypertrophy. Cellular energy supply was preserved, AMPK activation was absent, and mTOR activation was evident. In ischemic hearts with RISP deletion, new cardiomyocytes migrated into the infarcted region, suggesting the potential for therapeutic cardiac regeneration. RNA sequencing revealed upregulation of genes associated with cardiac development and proliferation. Metabolomic analysis revealed a decrease in α-ketoglutarate (required for TET-mediated demethylation) and an increase in S-adenosylmethionine (required for methyltransferase activity). Analysis revealed an increase in methylated CpGs near gene transcriptional start sites. Genes that were both differentially expressed and differentially methylated were linked to upregulated cardiac developmental pathways. We conclude that decreased mitochondrial function and increased glucose utilization can restore mitotic capacity in adult cardiomyocytes, resulting in the generation of new heart cells, potentially through the modification of substrates that regulate epigenetic modification of genes required for proliferation

    Author Correction: Disruption of mitochondrial complex I induces progressive parkinsonism

    Get PDF
    In the version of this article initially published, the two bottom-left panels in Extended Data Fig. 8b duplicated the top-left and bottom-right panels of Fig. 4d presenting open field traces in mice. The panels have now been replaced with new images. The errors have been corrected in the online version of the article.Loss of functional mitochondrial complex I (MCI) in the dopaminergic neurons of the substantia nigra is a hallmark of Parkinson’s disease1. Yet, whether this change contributes to Parkinson’s disease pathogenesis is unclear2. Here we used intersectional genetics to disrupt the function of MCI in mouse dopaminergic neurons. Disruption of MCI induced a Warburg-like shift in metabolism that enabled neuronal survival, but triggered a progressive loss of the dopaminergic phenotype that was first evident in nigrostriatal axons. This axonal deficit was accompanied by motor learning and fine motor deficits, but not by clear levodopa-responsive parkinsonism—which emerged only after the later loss of dopamine release in the substantia nigra. Thus, MCI dysfunction alone is sufficient to cause progressive, human-like parkinsonism in which the loss of nigral dopamine release makes a critical contribution to motor dysfunction, contrary to the current Parkinson’s disease paradigm.Electron microscopy tissue processing and imaging was performed at the Northwestern University Center for Advanced Microscopy, supported by NCI CCSG P30 CA060553 awarded to the Robert H. Lurie Comprehensive Cancer Center. This study was supported by grants from the Michael J. Fox Foundation (to D.J.S.), the JPB Foundation (to D.J.S.), the IDP Foundation (to D.J.S.), the Flanagan Fellowship (to P.G.-R.) and the European Research Council ERC Advanced Grant PRJ201502629 (to J.L.-B.).Peer reviewe

    Is the Public willing to help the Nigerian Police during the Boko Haram crisis? A look at moderating factors.

    Get PDF
    This paper sought the opinion of 200 Nigerians on their willingness to cooperate with the Police during the Boko Haram crisis. Public perceptions of Police effectiveness during the crisis, residence location, gender and religious affiliation were used as moderators. Data was analysed using an explanatory factor analysis and structural equation modelling. Results indicated a strong association between perceived effectiveness and willingness to report to the Police with respondents who question the effectiveness of the Police being less likely to be willing to report criminal activity about Boko Haram. Further to this, the impact of religion on willingness to report was at least partially mediated by perceived effectiveness of the Police with the results showing that Christian respondents perceived the Police as less effective. Females and those living in the North were significantly less willing to report criminal activity to the Police The findings are then discussed in relation to the BH crises and directions for future research are given
    • …
    corecore