328 research outputs found

    Transcriptome analyses reveal reduced hepatic lipid synthesis and accumulation in more feed efficient beef cattle

    Get PDF
    peer-reviewedThe genetic mechanisms controlling residual feed intake (RFI) in beef cattle are still largely unknown. Here we performed whole transcriptome analyses to identify differentially expressed (DE) genes and their functional roles in liver tissues between six extreme high and six extreme low RFI steers from three beef breed populations including Angus, Charolais, and Kinsella Composite (KC). On average, the next generation sequencing yielded 34 million single-end reads per sample, of which 87% were uniquely mapped to the bovine reference genome. At false discovery rate (FDR)  2, 72, 41, and 175 DE genes were identified in Angus, Charolais, and KC, respectively. Most of the DE genes were breed-specific, while five genes including TP53INP1, LURAP1L, SCD, LPIN1, and ENSBTAG00000047029 were common across the three breeds, with TP53INP1, LURAP1L, SCD, and LPIN1 being downregulated in low RFI steers of all three breeds. The DE genes are mainly involved in lipid, amino acid and carbohydrate metabolism, energy production, molecular transport, small molecule biochemistry, cellular development, and cell death and survival. Furthermore, our differential gene expression results suggest reduced hepatic lipid synthesis and accumulation processes in more feed efficient beef cattle of all three studied breeds

    Interactive microbial genome visualization with GView

    Get PDF
    Summary: GView is a Java application for viewing and examining prokaryotic genomes in a circular or linear context. It accepts standard sequence file formats and an optional style specification file to generate customizable, publication quality genome maps in bitmap and scalable vector graphics formats. GView features an interactive pan-and-zoom interface, a command-line interface for incorporation in genome analysis pipelines, and a public Application Programming Interface for incorporation in other Java applications

    Harnessing cross-species alignment to discover SNPs and generate a draft genome sequence of a bighorn sheep (Ovis canadensis)

    Get PDF
    Background: Whole genome sequences (WGS) have proliferated as sequencing technology continues to improve and costs decline. While many WGS of model or domestic organisms have been produced, a growing number of non-model species are also being sequenced. In the absence of a reference, construction of a genome sequence necessitates de novo assembly which may be beyond the ability of many labs due to the large volumes of raw sequence data and extensive bioinformatics required. In contrast, the presence of a reference WGS allows for alignment which is more tractable than assembly. Recent work has highlighted that the reference need not come from the same species, potentially enabling a wide array of species WGS to be constructed using cross-species alignment. Here we report on the creation a draft WGS from a single bighorn sheep (Ovis canadensis) using alignment to the closely related domestic sheep (Ovis aries). Results: Two sequencing libraries on SOLiD platforms yielded over 865 million reads, and combined alignment to the domestic sheep reference resulted in a nearly complete sequence (95% coverage of the reference) at an average of 12x read depth (104 SD). From this we discovered over 15 million variants and annotated them relative to the domestic sheep reference. We then conducted an enrichment analysis of those SNPs showing fixed differences between the reference and sequenced individual and found significant differences in a number of gene ontology (GO) terms, including those associated with reproduction, muscle properties, and bone deposition. Conclusion: Our results demonstrate that cross-species alignment enables the creation of novel WGS for non-model organisms. The bighorn sheep WGS will provide a resource for future resequencing studies or comparative genomics

    Characterization of bovine miRNAs by sequencing and bioinformatics analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) are a family of ~22 nucleotide small RNA molecules which regulate gene expression by fully or partially binding to their complementary sequences in mRNAs or promoters. A large number of miRNAs and their expression patterns have been reported in human, mouse and rat. However, miRNAs and their expression patterns in live stock species such as beef cattle are not well studied.</p> <p>Results</p> <p>We constructed and sequenced small-RNA libraries to yield a total of 13,541 small-RNA sequences from 11 bovine tissues including brain, subcutaneous fat, muscle, liver, kidney, spleen and thymus. In total, 228 miRNAs including 29 novel miRNA candidates were identified. Of the 199 miRNAs, 101 have been previously reported as bovine miRNAs and the other 98 are bovine orthologs of known miRNAs that have been identified in at least one other mammalian species. Of the 29 novel miRNA candidates, 17 appeared at this point in time to be bovine specific, while the remaining 12 had evidence of evolutionary conservation in other mammalian species. Five miRNAs (miR-23a, -23b, -99a, -125b and -126-5p) were very abundant across the 11 tissues, accounting for 44.3% of all small RNA sequences. The expression analysis of selected miRNAs using qRT-PCR also showed that miR-26a and -99a were highly expressed in all tissues, while miR-122 and miR-133a were predominantly expressed in liver and muscle, respectively.</p> <p>Conclusion</p> <p>The miRNA expression patterns among 11 tissues from beef cattle revealed that most miRNAs were ubiquitously expressed in all tissues, while only a few miRNAs were tissue specific. Only 60% miRNAs in this study were found to display strand bias, suggesting that there are some key factors for mature miRNA selection other than internal stability. Most bovine miRNAs are highly conserved in other three mammalian species, indicating that these miRNAs may have a role in different species that are potential molecular markers for evolution.</p

    Hyperspectral imaging combined with data classification techniques as an aid for artwork authentication

    Get PDF
    In recent years various scientific practices have been adapted to the artwork analysis process. Although a set of techniques is available for art historians and scientists, there is a constant need for rapid and non-destructive methods to empower the art authentication process. In this paper hyperspectral imaging combined with signal processing and classification techniques are proposed as a tool to enhance the process for identification of art forgeries. Using bespoke paintings designed for this work, a spectral library of selected pigments was established and the viability of training and the application of classification techniques based on this data was demonstrated. Using these techniques for the analysis of actual forged paintings resulted in the identification of anachronistic paint, confirming the falsity of the artwork. This paper demonstrates the applicability of infrared (IR) hyperspectral imaging for artwork authentication

    A high resolution radiation hybrid map of bovine chromosome 14 identifies scaffold rearrangement in the latest bovine assembly

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Radiation hybrid (RH) maps are considered to be a tool of choice for fine mapping closely linked loci, considering that the resolution of linkage maps is determined by the number of informative meiosis and recombination events which may require very large mapping populations. Accurately defining the marker order on chromosomes is crucial for correct identification of quantitative trait loci (QTL), haplotype map construction and refinement of candidate gene searches.</p> <p>Results</p> <p>A 12 k Radiation hybrid map of bovine chromosome 14 was constructed using 843 single nucleotide polymorphism markers. The resulting map was aligned with the latest version of the bovine assembly (Btau_3.1) as well as other previously published RH maps. The resulting map identified distinct regions on Bovine chromosome 14 where discrepancies between this RH map and the bovine assembly occur. A major region of discrepancy was found near the centromere involving the arrangement and order of the scaffolds from the assembly. The map further confirms previously published conserved synteny blocks with human chromosome 8. As well, it identifies an extra breakpoint and conserved synteny block previously undetected due to lower marker density. This conserved synteny block is in a region where markers between the RH map presented here and the latest sequence assembly are in very good agreement.</p> <p>Conclusion</p> <p>The increase of publicly available markers shifts the rate limiting step from marker discovery to the correct identification of their order for further use by the research community. This high resolution map of bovine chromosome 14 will facilitate identification of regions in the sequence assembly where additional information is required to resolve marker ordering.</p

    Most parsimonious haplotype allele sharing determination

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The "common disease – common variant" hypothesis and genome-wide association studies have achieved numerous successes in the last three years, particularly in genetic mapping in human diseases. Nevertheless, the power of the association study methods are still low, in particular on quantitative traits, and the description of the full allelic spectrum is deemed still far from reach. Given increasing density of single nucleotide polymorphisms available and suggested by the block-like structure of the human genome, a popular and prosperous strategy is to use haplotypes to try to capture the correlation structure of SNPs in regions of little recombination. The key to the success of this strategy is thus the ability to unambiguously determine the haplotype allele sharing status among the members. The association studies based on haplotype sharing status would have significantly reduced degrees of freedom and be able to capture the combined effects of tightly linked causal variants.</p> <p>Results</p> <p>For pedigree genotype datasets of medium density of SNPs, we present two methods for haplotype allele sharing status determination among the pedigree members. Extensive simulation study showed that both methods performed nearly perfectly on breakpoint discovery, mutation haplotype allele discovery, and shared chromosomal region discovery.</p> <p>Conclusion</p> <p>For pedigree genotype datasets, the haplotype allele sharing status among the members can be deterministically, efficiently, and accurately determined, even for very small pedigrees. Given their excellent performance, the presented haplotype allele sharing status determination programs can be useful in many downstream applications including haplotype based association studies.</p

    A high resolution radiation hybrid map of bovine chromosome 14 identifies scaffold rearrangement in the latest bovine assembly

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Radiation hybrid (RH) maps are considered to be a tool of choice for fine mapping closely linked loci, considering that the resolution of linkage maps is determined by the number of informative meiosis and recombination events which may require very large mapping populations. Accurately defining the marker order on chromosomes is crucial for correct identification of quantitative trait loci (QTL), haplotype map construction and refinement of candidate gene searches.</p> <p>Results</p> <p>A 12 k Radiation hybrid map of bovine chromosome 14 was constructed using 843 single nucleotide polymorphism markers. The resulting map was aligned with the latest version of the bovine assembly (Btau_3.1) as well as other previously published RH maps. The resulting map identified distinct regions on Bovine chromosome 14 where discrepancies between this RH map and the bovine assembly occur. A major region of discrepancy was found near the centromere involving the arrangement and order of the scaffolds from the assembly. The map further confirms previously published conserved synteny blocks with human chromosome 8. As well, it identifies an extra breakpoint and conserved synteny block previously undetected due to lower marker density. This conserved synteny block is in a region where markers between the RH map presented here and the latest sequence assembly are in very good agreement.</p> <p>Conclusion</p> <p>The increase of publicly available markers shifts the rate limiting step from marker discovery to the correct identification of their order for further use by the research community. This high resolution map of bovine chromosome 14 will facilitate identification of regions in the sequence assembly where additional information is required to resolve marker ordering.</p

    High density linkage disequilibrium maps of chromosome 14 in Holstein and Angus cattle

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Linkage disequilibrium (LD) maps can provide a wealth of information on specific marker-phenotype relationships, especially in areas of the genome where positional candidate genes with similar functions are located. A recently published high resolution radiation hybrid map of bovine chromosome 14 (BTA14) together with the bovine physical map have enabled the creation of more accurate LD maps for BTA14 in both dairy and beef cattle.</p> <p>Results</p> <p>Over 500 Single Nucleotide Polymorphism (SNP) markers from both Angus and Holstein animals had their phased haplotypes estimated using GENOPROB and their pairwise r<sup>2 </sup>values compared. For both breeds, results showed that average LD extends at moderate levels up to 100 kilo base pairs (kbp) and falls to background levels after 500 kbp. Haplotype block structure analysis using HAPLOVIEW under the four gamete rule identified 122 haplotype blocks for both Angus and Holstein. In addition, SNP tagging analysis identified 410 SNPs and 420 SNPs in Holstein and Angus, respectively, for future whole genome association studies on BTA14. Correlation analysis for marker pairs common to these two breeds confirmed that there are no substantial correlations between r-values at distances over 10 kbp. Comparison of extended haplotype homozygosity (EHH), which calculates the LD decay away from a core haplotype, shows that in Holstein there is long range LD decay away from the <it>DGAT1 </it>region consistent with the selection for milk fat % in this population. Comparison of EHH values for Angus in the same region shows very little long range LD.</p> <p>Conclusion</p> <p>Overall, the results presented here can be applied in future single or haplotype association analysis for both populations, aiding in confirming or excluding potential polymorphisms as causative mutations, especially around Quantitative Trait Loci regions. In addition, knowledge of specific LD information among markers will aid the research community in selecting appropriate markers for whole genome association studies.</p
    • …
    corecore