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Bovine hepatic miRNAome 
profiling and differential miRNA 
expression analyses between beef 
steers with divergent feed 
efficiency phenotypes
Robert Mukiibi1, Dayle Johnston2, Michael Vinsky3, Carolyn Fitzsimmons1,3, Paul Stothard1, 
Sinéad M. Waters2* & Changxi Li1,3*

MicroRNAs (miRNAs) are small RNA molecules involved in regulation of multiple biological processes 
through modulating expression of their target genes. Here we employed RNAseq to profile liver 
tissue miRNAome of 60 steers from Angus, Charolais, and Kinsella Composite (KC) populations. Of 
these animals, 36 animals (n = 12 for each breed) were utilized to identify differentially expressed (DE) 
miRNAs between animals with high (n = 6) or low (n = 6) phenotypic values of residual feed intake (RFI), 
a common measurement of feed efficiency. At a threshold of fold-change > 1.5 and P-value < 0.05, we 
detected 12 (7 up- and 5 downregulated in low-RFI animals), 18 (12 up- and 6 downregulated), and 13 
(8 up- and 5 downregulated) DE miRNAs for Angus, Charolais, and KC steers, respectively. Most of the 
DE miRNAs were breed specific, with bta-miR-449a and bta-miR-AB-2 being differentially expressed 
in all three breeds. The predicted target genes of the identified DE miRNA are mainly involved in cell 
cycle, cell death and survival, cell signaling, cellular growth and proliferation, protein trafficking, cell 
morphology, cell-to-cell signaling and interaction, cellular development, molecular transport, post-
translational modification, as well as nutrient metabolism (lipids, carbohydrates, protein and amino 
acid). Our results provide insights into the bovine hepatic miRNAome and their potential roles in 
molecular regulation of RFI in beef cattle.

Genetic selection and breeding for more feed efficient beef animals is of great interest to beef producers, since 
increased feed efficiency will reduce the cost of beef production as feed and feeding related expenditures contrib-
ute up to 75% of the total variable production  costs1. Additionally, studies have shown that breeding for more feed 
efficient animals can potentially reduce methane emissions from beef  cattle2,3, which could consequently lower 
the environmental carbon footprint of beef animals. Understanding the genetic control of complex traits such as 
feed efficiency can help enhance the rate of genetic improvement of the traits via the designing of more effective 
genetic or genomic selection  tools4. In this regard, multiple genome wide DNA marker association  studies5–9, and 
global transcriptomic profiling  studies10–18 have endeavored to identify markers, genes and biological functions 
associated with feed efficiency in beef cattle.

MicroRNAs are a group of small RNAs with an average length of approximately 22 nucleotides, mainly 
biosynthesized through the enzymatic cleavage of longer RNA molecules by DROSHA (nucleic) and DICER 
(cytoplasmic) RNase  endonucleases19–21. The synthesized miRNA then combines with Argonaute proteins to 
form a miRNA-induced silencing complex (miRISC)22, which under the guidance of the miRNA predominantly 
binds to the seed regions in the 3′ untranslated regions (UTRs) of the target mRNA, and hence leading to down-
regulation of the target  gene22,23. In mammalian cells, miRNAs target and regulate expression of up to 60% of 
the transcribed  genes24. Therefore, they are involved in multiple biological functions including cell proliferation, 
cell cycle, cell development, apoptosis, metabolism of amino acids, metabolism of lipids, metabolism of carbo-
hydrates, and metabolism of minerals and  vitamins25. In the liver, miRNAs have been implicated in regulating 
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hepatic cell proliferation, hepatic metabolism of nutrients (including lipids, carbohydrates, vitamins and minerals, 
and proteins and amino acids), energy metabolism and  detoxification26.

Previous transcriptomic studies have revealed the involvement of hepatic tissue in the molecular control 
of feed efficiency through identification of differentially expressed genes between efficient and inefficient 
 animals10–12,14,15,17,18. For instance, in our most recent studies we detected multiple differentially expressed genes 
associated with feed efficiency traits, some of which are involved in key hepatic functions such as lipid metabo-
lism, energy production, amino acid metabolism, and carbohydrate metabolism in beef  cattle18,27. However, 
studies that have sought to identify possible miRNA regulation of genes for feed efficiency in beef cattle are 
 limited28–30. Therefore, in this study we aimed to profile the hepatic miRNAome of beef steers from three beef 
breed populations including Angus, Charolais, and Kinsella Composite (KC), and to identify miRNAs associated 
with residual feed intake (RFI), a common measurement of feed efficiency, through small RNAseq differential 
expression analyses.

Results
miRNA sequence data and alignment quality. On average the Illumina next generation sequencing 
yielded over 9 M (million) high quality raw reads per sample for Angus and Charolais, and over 11 M for KC 
samples (Table S1 in Supplementary File 1). After 3′ adaptor clipping, an average of 36.78% of the reads were 
removed as long reads (> 28 bp), and an average of 8.19% of the reads were removed as short reads (< 15 bp) 
(Table S1 in Supplementary File 1). Additionally, on average 0.24%, 0.14%, 0.03%, and 0.03% of the reads were 
removed since they aligned to bovine rRNAs, tRNAs, snRNAs, and snoRNAs, respectively (Table S1 in Supple-
mentary File 1). An average of 5.5 M reads were retained for miRNA profiling analysis by mirDeep2 (Table S1 in 
Supplementary File 1). Most of the reads ranged between 20 and 24 bp in length as shown in Fig. 1a, with an 
average length of 21 bp. The retained reads were of high quality as depicted by high average Phred scores in 
Fig. 1b. Of the retained reads, 74.78% (SD = 2.31%) mapped to the UMD3.1 bovine reference genome on aver-
age, ranging from 72.47% (SD = 1.2%) for Charolais to 77.09% (SD = 1.34%) for KC (Table S1 in Supplementary 
File 1).

Known miRNA expression and novel miRNA profiles. We identified 541, 551, and 575 expressed 
known miRNAs in Angus, Charolais, and KC samples, respectively. Of all these, 528 unique known miRNAs 
(approximately 90%) were common to all the three breeds as shown in Fig. 2a. Among the highly expressed miR-
NAs, bta-miR-192 was the most abundant miRNA in all the three breeds with an average of 867,342, 1,060,828, 
and 1,272,798 aligned reads per sample from Angus, Charolais, and KC populations, respectively. Ten miRNAs 
showed predominantly high expression including bta-miR-192, bta-miR-143, bta-miR-148a, bta-miR-26a, bta-
miR-30a-5p, bta-miR-22-3p, bta-miR-27b, bta-let-7f, bta-miR-27a-3p, and bta-miR-101, and they accounted for 
an average of 78.4%, 78.3%, and 77.9% of the total aligned sequence reads in Angus, Charolais, and KC animals, 
respectively. The top 20 expressed miRNAs across studied samples from each of the breeds are presented in 
Table 1, while all the expressed known miRNAs identified, and their average aligned read counts in each breed 
are presented in Supplementary File 2. 

At a mirDeep2 score ≥ 4, an estimated probability that the predicted miRNA candidate is a true positive is 
greater than 70%, and with a significant Randfold p-value suggesting that the miRNA’s precursor sequence could 
be folded into a thermodynamically stable hairpin, we identified 126 (from 129 precursors), 101 (from 103 pre-
cursors), and 119 (from 125 precursors) novel miRNAs in Angus, Charolais, and KC samples, respectively. The 

Figure 1.  (a) Line plot showing the read length distributions in the final cleaned sequence data after quality 
control involving 3′ Illumina sequencing adaptor clipping, removing very long reads (> 28 bp) and short reads 
(< 15 bp), and removing reads that mapped to other small RNA species (rRNAs, snRNAs, tRNAs and snoRNAs) 
for Angus, Charolais, and Kinsella Composite (KC) samples; (b) Box plots showing the average Phred quality 
scores of the retained reads.
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identified novel miRNAs were largely expressed in one breed, with only 31 of them being commonly expressed 
across all the three breeds (Fig. 2b). Of the 241 unique novel miRNAs, bta-miR-AB-10 and bta-miR-AB-9 were 
the most expressed ones across the three breeds with an average of 52,817 and 46,932 reads aligned to these 
miRNAs, respectively (Table 2). The hairpin structure of the precursor and the read alignment distribution (i.e. 
alignment to the mature, star and loop sequences) of bta-miR-AB-10 across the three breeds are presented in 
Fig. S1 in Supplementary File 1, indicating that the majority of the reads were aligned to mature micro RNA por-
tion of the precursor. The top 20 expressed novel miRNAs and their miRDeep2 prediction scores are presented in 
Table 2 for each breed population, while all the identified novel miRNAs and their miRDeep2 prediction scores 
are provided in Supplementary File 3.

miRNA differential expression. Differential miRNA expression analysis was performed between the six 
(n = 6) low- and six (n = 6) high-RFI steer groups from the profiled animals for each breed population as selec-

Figure 2.  (a) Venn diagram showing overlap of expressed known miRNAs in the liver tissue of steers from the 
three studied breeds [Angus, Charolais, and Kinsella Composite (KC)]; (b) Venn diagram showing overlap of 
novel miRNAs identified between the three studied breeds (Angus, Charolais, and KC).

Table 1.  Top 20 highly expressed known miRNAs (by aligned read counts) from each of the three breed 
populations (Angus, Charolais, and KC) studied. Highly expressed miRNAs (n=16) which were commonly 
expressed across the three breed populations are highlighted in bold.

Angus Charolais Kinsella composite (KC)

Expressed known 
miRNAs

Average count/
sample

Expressed known 
miRNAs

Average count/
sample

Expressed known 
miRNAs

Average count/
sample

1 bta-miR-192 867,342 bta-miR-192 1,060,828 bta-miR-192 1,272,798

2 bta-miR-143 613,476 bta-miR-143 778,165 bta-miR-143 961,386

3 bta-miR-148a 479,349 bta-miR-148a 535,207 bta-miR-148a 656,136

4 bta-miR-26a 177,987 bta-miR-26a 225,551 bta-miR-26a 273,009

5 bta-miR-30a-5p 163,172 bta-miR-30a-5p 180,528 bta-miR-30a-5p 225,973

6 bta-miR-22-3p 145,620 bta-miR-22-3p 156,016 bta-miR-22-3p 183,337

7 bta-miR-27b 110,066 bta-miR-27b 120,648 bta-miR-27b 154,701

8 bta-let-7f 108,663 bta-let-7f 117,980 bta-let-7f 126,847

9 bta-miR-27a-3p 70,791 bta-miR-27a-3p 77,866 bta-miR-27a-3p 96,651

10 bta-miR-101 65,614 bta-miR-101 74,408 bta-miR-101 90,249

11 bta-miR-126-5p 56,376 bta-miR-21-5p 66,516 bta-miR-126-5p 84,323

12 bta-miR-21-5p 52,293 bta-miR-126-5p 66,357 bta-miR-21-5p 73,380

13 bta-miR-92a 44,493 bta-miR-191 51,924 bta-miR-191 69,342

14 bta-miR-191 42,488 bta-miR-215 49,126 bta-miR-92a 60,130

15 bta-let-7a-5p 38,480 bta-miR-92a 47,179 bta-miR-100 53,849

16 bta-miR-215 35,905 bta-let-7a-5p 43,199 bta-let-7a-5p 50,790

17 bta-miR-486 30,488 bta-miR-122 37,749 bta-miR-215 46,908

18 bta-miR-30e-5p 30,000 bta-miR-181a 36,215 bta-miR-122 45,063

19 bta-miR-100 29,097 bta-miR-26b 33,505 bta-miR-486 42,147

20 bta-miR-181a 28,292 bta-miR-30e-5p 32,822 bta-miR-26b 41,433
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Provisional ID miRDeep2 score
Estimated probability that the 
miRNA candidate is a true positive Total read count

Mature miRNA consensus 
sequence

Angus

bta-miR-AB-10 18,895.5 83 ± 5% 37,061 aaagcugaaugaacuuuuuggc

bta-miR-AB-9 4.9 77 ± 4% 35,497 agagaugaagcacuggagc

bta-miR-AB-122 5.5 83 ± 4% 9964 ugggcugcagugcgcuaugcc

bta-miR-AB-83 3438.3 83 ± 5% 6743 aaaaccugaaugaacuuuu

bta-miR-AB-93 1927.8 83 ± 5% 3784 aaagaaguuuguuuggguuuu

bta-miR-AB-59 5.1 83 ± 4% 3766 caaaaaguuuguuuggguuuu

bta-miR-AB-65 1854.7 83 ± 5% 3641 aaaaagguuuguuuggguuuu

bta-miR-AB-27 1789.4 83 ± 5% 3501 aaaaaaguuuguuuggauuuu

bta-miR-AB-95 5.2 83 ± 4% 3466 aaaaaaguuuguguggguuuu

bta-miR-AB-52 1663.5 83 ± 5% 3254 aaaaaaguuuguuugguuuuu

bta-miR-AB-29 1435.9 83 ± 5% 2816 acucgaacgaauuuuuggcc

bta-miR-AB-3 4.8 77 ± 4% 2725 guccaguuuucccaggaa

bta-miR-AB-2 6.2 84 ± 5% 1536 gggggccggcggcggcggcggc

bta-miR-AB-54 4.6 77 ± 4% 1210 gaaaaaguuuguuuggguuu

bta-miR-AB-67 4.3 77 ± 4% 1116 aaaaaaguuuguuugggauu

bta-miR-AB-28 4.8 77 ± 4% 1051 caaaaaguucguccagauuuu

bta-miR-AB-12 4.9 77 ± 4% 1041 aucccacuucugacacca

bta-miR-AB-23 502 83 ± 5% 985 acaaccugaaugaacuuuuuga

bta-miR-AB-19 5.1 83 ± 4% 976 ucaaguagcucacagucuag

bta-miR-AB-63 467.3 83 ± 5% 915 ggaauaccggguacuguaggcu

Charolais

bta-miR-AB-10 29,069.9 77 ± 6% 57,018 aaagcugaaugaacuuuuuggc

bta-miR-AB-9 4.9 70 ± 4% 54,090 agagaugaagcacuggagc

bta-miR-AB-3 4.8 70 ± 4% 3570 guccaguuuucccaggaa

bta-miR-AB-29 1680.6 77 ± 6% 3296 acucgaacgaauuuuuggcc

bta-miR-AB-19 5.1 78 ± 5% 1897 ucaaguagcucacagucuag

bta-miR-AB-2 6.2 78 ± 5% 1291 gggggccggcggcggcggcggc

bta-miR-AB-12 4.9 70 ± 4% 1173 aucccacuucugacacca

bta-miR-AB-23 569.8 77 ± 6% 1118 acaaccugaaugaacuuuuuga

bta-miR-AB-148 561.9 77 ± 6% 1101 uuguccgacucuuagcgg

bta-miR-AB-28 4.8 70 ± 4% 1046 caaaaaguucguccagauuuu

bta-miR-AB-137 416.7 77 ± 6% 818 aaaucugaacaagcuuuuuggc

bta-miR-AB-156 406.5 77 ± 6% 796 aaaaaguucguuuggguuuuu

bta-miR-AB-7 401.1 77 ± 6% 785 aaaacugaaugaacauuuuggc

bta-miR-AB-48 333.4 77 ± 6% 653 cgaaaaguucguuuggguuuu

bta-miR-AB-47 251.3 77 ± 6% 491 aaaaguucguuucgguuuuucc

bta-miR-AB-145 4.3 70 ± 4% 381 ucuuggagcucaccgucuag

bta-miR-AB-168 4.7 70 ± 4% 375 cugaccuaugaauugaag

bta-miR-AB-158 190.1 77 ± 6% 372 aaaaaguuccuuuggguuuuc

bta-miR-AB-34 174.6 77 ± 6% 341 ucuagaagcucacagucuag

bta-miR-AB-146 171.8 77 ± 6% 335 uucucagguuggacaguccuga

Kinsella composite (KC)

bta-miR-AB-10 32,819.1 80 ± 5% 64,372 aaagcugaaugaacuuuuuggc

bta-miR-AB-9 4.9 74 ± 4% 51,210 agagaugaagcacuggagc

bta-miR-AB-225 3118.6 80 ± 5% 6111 cucucgagucgcgacguguaucuc

bta-miR-AB-59 5.1 80 ± 4% 5151 caaaaaguuuguuuggguuuu

bta-miR-AB-65 2566.5 80 ± 5% 5037 aaaaagguuuguuuggguuuu

bta-miR-AB-206 5.2 80 ± 4% 5028 gaaaaaguuuguuuggguuuu

bta-miR-AB-27 5.3 80 ± 4% 4809 aaaaaaguuuguuuggauuuu

bta-miR-AB-3 4.8 74 ± 4% 4745 guccaguuuucccaggaa

bta-miR-AB-52 2256.4 80 ± 5% 4417 aaaaaaguuuguuugguuuuu

bta-miR-AB-29 2249.6 80 ± 5% 4412 acucgaacgaauuuuuggcc

bta-miR-AB-63 1079.1 80 ± 5% 2115 ggaauaccggguacuguaggcu

bta-miR-AB-54 4.6 74 ± 4% 1591 gaaaaaguuuguuuggguuu

bta-miR-AB-28 4.8 74 ± 4% 1502 caaaaaguucguccagauuuu

Continued
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tion of these 6 low- and 6 high-RFI resulted in an increased divergence between the low and high RFI animal 
groups. The low- and high-RFI steer groups of the three breed populations were all significantly different in 
their average RFI phenotypic values at P-value < 0.0042 after the Bonferroni correction for multiple comparisons 
(Table S2 in Supplementary File 1). For other traits, low-RFI animals consumed significantly less feed per day 
than their high-RFI counterparts in Charolais and KC. In Angus, low-RFI animals on average also consumed 
less feed as compared to the high-RFI animals although the difference did not reach the level of statistical sig-
nificance (i.e. P-value > 0.0042). The average phenotypic values of other traits including animal slaughter age 
were not significantly different between the high and low RFI groups (Table S1 in Supplementary File 1). At a 
fold change (FC) > 1.5 and a P-value < 0.05, we identified 12 DE miRNAs in the liver tissue of Angus including 
10 known miRNAs and two novel miRNAs (Table 3). Of these DE miRNAs, five were downregulated and seven 
were upregulated in low-RFI animals. In Charolais, we identified 18 DE miRNAs including 16 known miRNAs 
and two novel miRNAs, of which six were downregulated and 12 were upregulated in low-RFI Charolais steers 
(Table 3). In KC, 13 DE miRNAs including 10 known miRNAs and three novel miRNAs were identified, with 
five downregulated and eight upregulated in low-RFI steers (Table 3). Of all the identified DE miRNAs, bta-
miR-449a and bta-miRNA-2 were common to all three breeds (Fig. 3). Of the two common DE miRNAs, bta-
miR-449a was upregulated in the low-RFI steers of all three breed populations whereas bta-miRNA-AB-2 was 
upregulated in Charolais, and downregulated in both Angus and KC low-RFI steers (Fig. 3). 

Additionally, at a more stringent false discovery rate (FDR) < 0.05 (Bonferroni correction for multiple tests) 
and a FC > 1.5, two (bta-miR-11985 and bta-miR-AB-2), three (bta-mir-2415-3p, bta-mir-2419-5p, and bta-miR-
AB-2) and six (bta-miR-190a, bta-miR-449a, bta-miR-155, bta-miR-424-5p, bta-miR-223, and bta-miR-AB-63) 
DE miRNAs were identified in Angus, Charolais, and KC, respectively, as highlighted in Table 3.

Target gene prediction and functional enrichment analyses for the most abundant known and 
novel miRNAs. We performed target gene prediction for 18 miRNAs (16 known and 2 novel miRNAs bta-
miR-AB-10 and bta-miR-AB-9) that were identified as the most expressed across the three breed populations 
for functional enrichment analyses (Tables  1, 2). At a threshold cut off  of  not less than the 99th context++ 
score percentile, we identified 1022 target genes. A list of all these identified targets, their respective TargetScan 
scores for the fourteen parameters, and the mRNA-miRNA correlation coefficients in the samples of the three 
populations are provided in Supplementary File 4. Of these target genes, 1008 mapped to the IPA ingenuity 
database, and they are mainly involved in cell morphology, cellular assembly and organization, cellular growth 
and proliferation, free radical scavenging, and cell death and survival biological functions. All metabolic and 
cellular functions significantly enriched by the identified targets are presented in Fig. S2 of Supplementary File 
1. For cell morphology, the target genes are mainly involved in maintaining morphology of cellular organelles 
such as nucleus and cellular the transmembrane potential. For cellular growth and proliferation, the target genes 
are involved in proliferation of liver cells, and proliferation and development of different immune cells such as 
macrophages, lymphocytes, and natural killer cells, whereas for cell death and survival biological function, the 
target genes are primarily involved in necrosis and apoptosis. Also, IPA identified sirtuin signaling, 1L-12 sign-
aling and production in macrophages, tryptophan degradation III, receptor recognition of bacteria and viruses 
and senescence pathway, as presented in Fig. S3 in Supplementary File 1.

DE miRNAs target gene prediction. For the differentially expressed known and novel miRNAs within 
each breed (Table 3), we identified 767, 1667, and 787 target genes for Angus, Charolais, and KC, respectively, 
at a minimum context++ score percentile of 99. The targets, their targeting DE miRNAs, the target-miRNA 
TargetScan estimated scores and the mRNA-miRNA correlation coefficients in the studied animals from each 
breed are presented in Supplementary File 5. Functional enrichment analysis for the target genes identified for 
DE miRNAs in Angus are mainly involved in regulating the gene expression of cell cycle, gene expression modu-
lation, cellular assembly and organization, DNA replication, recombination and repair and RNA post-transcrip-
tion modification (Fig. S4 in Supplementary File 1). Additionally, the major pathways enriched by these target 
genes included HIPPO signaling, GADD45 signaling, ATM signaling, endoplasmic reticulum stress pathway, 
and Granulocyte adhesion and diapedesis pathway as shown in Fig. S5 in Supplementary File 1. For Charolais, 
the identified targets are majorly involved in protein synthesis, protein trafficking, RNA post-translation modi-
fication, lipid metabolism, and molecular transport (Fig. S6 in Supplementary File 1). Estrogen receptor signal-
ing, granzyme A signaling, sirtuin signaling pathway, protein ubiquitination pathway, and coagulation system 

Provisional ID miRDeep2 score
Estimated probability that the 
miRNA candidate is a true positive Total read count

Mature miRNA consensus 
sequence

bta-miR-AB-23 750.3 80 ± 5% 1472 acaaccugaaugaacuuuuuga

bta-miR-AB-67 4.3 74 ± 4% 1434 aaaaaaguuuguuugggauu

bta-miR-AB-12 4.9 74 ± 4% 1429 aucccacuucugacacca

bta-miR-AB-2 6.2 80 ± 5% 1320 gggggccggcggcggcggcggc

bta-miR-AB-18 406.1 80 ± 5% 790 aaacccugaaggaacuuuu

bta-miR-AB-7 376.6 80 ± 5% 737 aaaacugaaugaacauuuuggc

bta-miR-AB-198 289.8 80 ± 5% 567 aaaaucugaacaaacuuuu

Table 2.  Top 20 expressed novel miRNAs identified in the liver tissue of Angus, Charolais, and KC steers.



6

Vol:.(1234567890)

Scientific Reports |        (2020) 10:19309  | https://doi.org/10.1038/s41598-020-73885-5

www.nature.com/scientificreports/

pathway were identified as among the major canonical pathways enriched by Charolais DE miRNA target genes 
(Fig. S7 in Supplementary File 1). For KC, cell signaling, RNA post-translation modification, protein synthesis, 

Table 3.  Differentially expressed known and novel micro RNAs (miRNAs) between high and low-RFI animals 
within each breed population [Angus, Charolais, and Kinsella Composite (KC)], with a differential expression 
threshold of P-value < 0.05 and Fold-change (FC)  > 1.5. The sign of logFC shows the direction of miRNA 
expression in low-RFI steers relative to high-RFI animals. The miRNAs that were significantly differentially 
expressed at a more stringent threshold of Bonferroni false discovery rate (FDR) correction < 0.05 and Fold-
change > 1.5 are highlighted in bold and a “**” was added to their P-values. logCPM = log2 (counts per million), 
LR = likelihood ratio test static value, and logFC =  log2(Fold-change).

Angus MicroRNA logCPM LR logFC P-value

Known

bta-miR-11985 1.621 13.815 − 1.377 2.02E−04**

bta-miR-2285bg 1.137 8.352 1.185 3.85E−03

bta-miR-2285n 1.387 8.151 1.082 4.30E−03

bta-miR-2285u 2.058 7.091 0.836 7.75E−03

bta-miR-424-3p 1.518 6.951 0.959 8.38E−03

bta-miR-27a-5p 1.221 5.840 − 0.978 0.016

bta-miR-24 1.242 5.788 − 0.967 0.016

bta-miR-507b 1.399 5.536 − 0.9 0.019

bta-miR-449a 1.701 5.152 0.782 0.023

bta-miR-133b 2.064 4.528 0.663 0.033

Novel
bta-miR-AB-2 13.325 14.568 − 0.833 1.35E−04**

bta-miR-AB-47 12.173 6.063 0.617 0.014

Charolais

Known

bta-mir-2415-3p 3.608 29.032 1.261 7.12E−08**

bta-mir-2419-5p 6.405 24.192 0.797 8.72E−07**

bta-mir-2285i 1.906 9.603 1.117 0.002

bta-mir-133a 5.218 9.457 − 0.966 0.002

bta-mir-449a 1.456 9.648 0.64 0.002

bta-mir-2346 0.871 8.829 − 1.33 0.003

bta-mir-1842 1.058 6.220 − 1.026 0.013

bta-mir-2284ac 2.414 6.068 0.656 0.014

bta-mir-2285ai-5p 2.442 5.946 0.645 0.015

bta-mir-12001 1.884 5.527 − 0.729 0.019

bta-mir-299 1.565 5.103 0.772 0.024

bta-mir-2284c 0.490 4.773 − 1.104 0.029

bta-mir-485 0.816 3.860 0.747 0.043

bta-mir-6521 1.445 3.855 − 0.872 0.049

bta-mir-365-5p 1.320 4.076 0.916 0.049

bta-mir-7859 0.659 3.860 0.696 0.0496

Novel
bta-miR-AB-2 13.410 10.823 0.77 0.001**

bta-miR-AB-15 11.255 5.830 0.735 0.0158

KC

Known

bta-miR-190a 1.873 77.302 − 3.133 1.47E−18**

bta-miR-449a 2.225 20.035 1.252 7.61E−06**

bta-miR-155 6.653 17.100 0.829 3.55E−05**

bta-miR-424-5p 4.561 12.718 0.756 3.62E−04**

bta-miR-223 5.207 12.131 0.737 4.96E−04**

bta-miR-1246 4.554 10.385 − 0.683 1.27E−03

bta-miR-363 1.947 8.661 0.866 0.003

bta-miR-147 2.006 7.647 0.801 0.006

bta-miR-2411-3p 1.834 5.032 − 0.677 0.025

bta-miR-2483-5p 0.672 4.255 0.877 0.039

Novel

bta-miR-AB-63 16.176 77.900 − 0.864 9.58E−04**

bta-miR-AB-225 14.839 5.533 1.228 0.002

bta-miR-AB-2 11.531 4.147 − 0.677 0.013
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cell-to-cell signaling and interaction, cellular growth and proliferation were identified as the major molecular 
and cellular functions enriched by the targets genes of the DE miRNAs identified (Fig. S8 in Supplementary File 
1). Additionally, RhoGDI signaling, Ras homolog family member A (RhoA) signaling, signaling by Rho fam-
ily GTPases, oxidative phosphorylation and diphthamide biosynthesis were identified as the major pathways 
enriched by the target genes (Fig. S9 in Supplementary File 1).

DE miRNAs target gene prediction among DE genes previously identified. Within the same 
breed populations used in the current study, we previously identified 72, 41, and 175 DE genes between low- and 
high-RFI steer groups for Angus, Charolais, and KC,  respectively18. At a minimum context++ score percentile 
of 99, one (GNAZ), two (THEM4 and CES1), and five (PALMD, C12orf45, IRAK3, CITED4, and IL20RA) out of 
the 72, 41, and 175 DE genes were predicted as targeted DE genes for the DE miRNAs, respectively, in the same 
Angus, Charolais, and KC populations. However, at a lower threshold (> 50th context++ score percentile), we 
detected 44, 31, and 129 target DE genes out of the 72, 41, and 175 DE genes as potential targets for the DE miR-
NAs identified in the current study for Angus, Charolais, and KC animals, respectively. All DE genes (as reported 
by Mukiibi et al.18) identified as targets of the DE miRNAs in the current study and their mRNA-miRNA cor-
relation coefficients for all the three breeds are presented in Supplementary File 5 at a minimum context++ score 
percentile of 99 and in Supplementary File 6 at a threshold > 50th context++ score percentile. These indicated 
that approximately 70% of the DE genes were potentially targeted by the identified miRNAs in this study, rang-
ing from 61.1% for Angus to 75.6% for Charolais. Of the 44, 31, and 129 target DE genes, 31, 24, and 89 genes in 
Angus, Charolais, and KC, respectively, were predicted to be targeted by multiple DE miRNAs. However, a few 
of the DE target genes were predicted to be targeted by a single miRNA, and it was observed that the up-regu-
lation DE miRNAs did not always lead to down-regulation of DE genes in the liver tissue of low-RFI animals as 
demonstrated in Figs. 4, 5 and 6 for Angus, Charolais, and KC, respectively. Also, most of the DE miRNAs were 
predicted to predominantly target multiple genes for Angus, Charolais, and KC (Figs. 4, 5, and 6). The miRNA 
bta-miR-449a, which was identified as a common and upregulated DE in low-RFI steers of all the three breeds, 
was predicted to target 16, 11, and 35 DE genes in Angus, Charolais, and KC steers, respectively, of which only 
three target genes including (SERPINA3, TP53INP1 and LPIN1) were common to all the three breeds. Of the 
16 target genes of bta-miR-449a identified in Angus, 12 and 4 were downregulated and upregulated respectively 
in the liver tissue of low-RFI animals (Fig. 4). Of the 11 targets identified for bta-miR-449a in Charolais, 4 and 
7 were downregulated and upregulated respectively in the liver tissue of low-RFI animals (Fig. 5). In KC, of the 
35 targets by bta-miR-449a 23 and 12 were downregulated and upregulated, respectively, in the liver tissue of 
low-RFI animals (Fig. 6).  

In Angus, RAB30 and FKBP5 genes were found to be the major target genes for the identified DE miRNAs, 
with each predicted to be targeted by six miRNAs (Fig. 4). The other six major target genes including COL1A1, 
ELOVL5, SCD, TLE1, TP53INP1, and TTC39C, were predicted to be regulated by five DE miRNAs each, as 
shown in Fig. 4. Of these targets, FKBP5, COL1A1, SCD, TLE1, and TP53INP1 were downregulated in low-
RFI animals, whereas RAB30, ELOVL5, and TTC39C were upregulated in the same animals. Additionally, the 
miRNAs and DE target gene interaction networks showed bta-miR-2285n, bta-miR-2285u, and bta-miR-449a 
(all upregulated) as the major miRNAs, targeting 23, 19, and 16 DE genes, respectively (Fig. 4). Other major 
miRNAs including bta-miR-AB-2, bta-miR-AB-47, and bta-miR-424-3p, are predicted to regulate 14, 13, and 
12 DE genes, respectively. We also identified that 39 DE genes were targeted by one or multiple upregulated (in 
low-RFI animals) DE miRNAs in Angus, of which 23 were downregulated in low-RFI animals whereas 16 were 
upregulated in the animals of low-RFI.

For Charolais, the major targeted genes included SIRPA (predicted to be targeted by 10 DE miRNAs), ABCC4 
(predicted to be targeted by nine DE miRNAs), DLK1, and TP53INP1 (each predicted to be targeted by eight 
DE miRNAs), SCD, SLC7A5, and THEM4 (each predicted to be targeted by seven DE miRNAs), and AK4 (pre-
dicted to be regulated by six DE miRNAs) (Fig. 5). SLC7A5, TP53INP1, SCD, and THEM4 were downregulated, 

Figure 3.  (a) Venn diagram showing differentially expressed miRNA overlaps among the studied populations 
[Angus, Charolais, and Kinsella Composite (KC)]; (b) Bar plot showing expression of bta-miR-449a and bta-
miR-AB-2 in low-RFI steers of the three breed populations.
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whereas AK4, SIRPA, DLK1, and ABCC4 were upregulated in low-RFI animals. Furthermore, bta-miR-2285ai-5p 
(14 targets), bta-miR-7859 (12 targets), bta-miR-2284ac (11 targets), bta-miR-AB-2 (11 targets), bta-miR-449a 
(10 targets) were predicted to be major regulators among the identified DE miRNAs and were all upregulated 
in liver tissue of low-RFI steers, as shown in Fig. 5. SIRPA (upregulated in low-RFI steers) was predicted to be 
co-regulated by all the five major DE miRNAs. Thirteen of the 30 DE genes predicted to be targeted by either 
single or multiple upregulated (in low-RFI steers) DE miRNAs were downregulated, whereas the other 17 were 
upregulated (low-RFI steers) even though they were predicted to be targeted by multiple upregulated DE miR-
NAs in Charolais.

For KC, the main predicted target DE genes included FKBP5 (targeted by 10 DE miRNAs), TP53INP1 (tar-
geted by 8 DE miRNAs), PPARGC1A and IGF1 (both targeted by 7 DE miRNAs), EDNRA, GCH1, MKNK1, 
IRAK3, and HEYL, which were targeted by 6 DE miRNAs each. HEYL, FKBP5, TP53INP1, PPARGC1A, MKNK1, 
and GCH1were downregulated in the liver tissue of low-RFI animals, whereas IGF1, IRAK3 and EDNRA were 
upregulated in the liver tissue of the same animals. Among the DE miRNAs, bta-miR-424-5p (targeting 61 DE 
genes), bta-miR-AB-2 (targeting 41 DE genes) bta-miR-2411-3p (targeting 40 DE genes), bta-miR-223 (targeting 
36 DE genes), and bta-miR-449a (targeting 35 DE genes) were identified as major regulators, as shown in Fig. 6. 
Other main DE miRNAs included bta-miR-AB-63 (targeting 28 DE genes), bta-miR-363 (targeting 26 DE genes), 
bta-miR-155 (targeting 23 DE genes), bta-miR-1246 (targeting 20 DE genes), and bta-miR-2483-5p (targeting 19 
DE genes) (Fig. 6). Of the 106 DE genes predicted to be targeted by a single or multiple upregulated (in low-RFI 
steers) DE miRNAs, 62 were upregulated in the liver tissue of the same animals. However, the other 44 DE genes 
were upregulated despite being targeted by either a single or multiple upregulated miRNAs (Fig. 6).

Functional enrichment analysis of the DE miRNA targeted DE genes identified multiple biological func-
tions that greatly overlapped with those identified for all the DE genes reported by Mukiibi et al.18. For Angus, 
the DE miRNA target DE genes are mainly involved in lipid metabolism, molecular transport, small molecule 
biochemistry, energy production, and carbohydrate metabolism, as shown in Fig. S10 in Supplementary File 
1. For Charolais, lipid metabolism, molecular transport, small molecule biochemistry, cellular movement, and 
cell-to-cell signaling and interaction were identified as the main biological functions enriched by the identified 
DE targets, as shown in Fig. S11 in Supplementary File 1. For KC, the DE genes targeted by the DE miRNA 
are primarily involved in amino acid metabolism, small molecule biochemistry, lipid metabolism, vitamin and 
mineral metabolism, and cell death and survival, as presented in Fig. S12 in Supplementary File 1. All the target 
DE genes involved in each of the top five significantly enriched cellular and metabolic functions for the three 
breeds are presented in Table S3 in Supplementary File 1.

Discussion
RNA sequencing offers a greater resolution to profile miRNAs, even at very low levels of expression in the 
 cells31, and allows for the parallel profiling of abundance of known miRNAs as well as the identification of novel 
 miRNAs32. Additionally, the availability of miRNA sequences enables the prediction of potential target genes for 
both known and novel  miRNAs31. In the current study we employed deep sequencing of small RNAs to profile 
miRNA expression in the liver tissues of 60 beef steers from three distinct beef breed populations. We obtained 
high quality sequence data as revealed by our sequencing quality results, with an average Phred quality score of 

Figure 4.  DE target genes and DE miRNAs interaction network generated using Cytoscape and regulation of 
both DE miRNAs and DE target genes in the liver tissue of low-RFI Angus steers.
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37.3 across the samples of the three breeds. Additionally, sequence data quality control processing (including 
removal of other small miRNAs) resulted in read sequences with an average length of 21 bp, and the majority of 
the reads ranged between 20 and 24 bp across the samples from the three breeds, as shown in Fig. 1a, providing 
high quality and reliable reads for downstream alignment and abundancy profiling of  miRNAs33. Furthermore, 
to validate the RNAseq miRNA profiling results, we conducted TaqMan qPCR differential expression analysis on 
six selected miRNAs (Table S4 in Supplementary File 1). It showed that all expression levels in low-RFI animals 
were consistent between the RNAseq and TaqMan qPCR (Fig. S13 and Table S4 in Supplementary File 1), with 
the P-values of significance tests of qPCR between high and low-RFI animals groups ranging from a significant 
P-value (< 0.05) for bta-miR-133a (P-value = 0.003) to suggestive P-values (P-value = 0.054 and P-value = 0.086) 
for bta-miR-223 and bta-miR-424-5p, respectively, to relatively higher P-values ranging from 0.144 to 0.314 for 
the other three miRNAs, as shown in Fig. S13 and Table S4 in Supplementary File 1. Although the differential 
expression P-values for qPCR results were not as low as those for RNAseq, which might be related to sensitivity 
differences between the two methods regarding profiling gene  expression31, we observed that the Pearson cor-
relation coefficients were high (0.73 – 0.99) between the qPCR and RNAseq profiles and significant (6.79E−03 
to 6.00E−10) (Table S5 in the Supplementary File 1), which indicates that the RNAseq results were highly 
reproducible.

With a high average alignment rate close to 75%, we found that approximately 90% of the identified miRNAs 
were expressed in all the three breed populations, indicating a high level of similarity among the breeds in terms 
of hepatic miRNA expression. Similarly, high similarity rates in expression patterns were also observed for the 
protein coding genes in the same populations, where over 96% of the expressed genes were commonly expressed 
among the liver tissues of the same beef cattle  populations18. Of the expressed miRNAs, 10 were highly expressed 
including bta-miR-192, bta-miR-143, bta-miR-148a, bta-miR-26a, bta-miR-30a-5p, bta-miR-22-3p, bta-miR-27b, 
bta-let-7f, bta-miR-27a-3p, and bta-miR-101, and these accounted for an average of 78.2% of the aligned reads 
for the profiled liver tissues of the studied animals across the three breeds (Table 1). The miRNAs bta-miR-101, 
bta-miR-143, bta-miR-30a-5p, bta-let-7f, bta-miR-192, and bta-miR-148a were previously reported among the 10 

Figure 5.  DE target genes and DE miRNAs interaction network generated using Cytoscape and regulation of 
both DE miRNAs and DE target genes in the liver tissue of low-RFI Charolais steers.
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top most expressed miRNAs in the liver tissue of Australian Angus  steers28 and Chinese Holstein dairy  cows34, 
indicating their stable high expression across a wide range of cattle breeds, despite the genetic distinctiveness of 
these animals. Additionally, Sun et al. reported high expression levels of these miRNAs in multiple tissues, with 
bta-miR-143 and bta-miR-27b particularly showing high levels of expression in all the tissues from both beef and 
dairy  animals34. High expression of these miRNAs in different tissues indicates their potentially critical impor-
tance to modulate key biological functions in those bovine tissues. The miRNA bta-miR-192, which was the most 
expressed miRNA across the three breed populations, belongs to the miR-192/215 family, whose homologous 
members have been implicated in several biological functions and disease disorders in different species. For 
example, miR-192 has been reported in mice to regulate genes involved in glucose metabolism, cell adhesion and 
migration, tumorigenesis and tumor progression, protein SUMOylation, epigenetic regulation and epithelial-
mesenchymal transition of the hepatic cells through the HNF4-miR-194/ miR-192 signaling  pathway35. In sheep, 
miR-192 has been reported to be involved in regulating the growth and development of skeletal  muscle36.

To explore the biological importance of the highly expressed miRNAs across the liver tissues of the studied 
animals, we performed target gene prediction of 18 miRNAs that were highly expressed in steers from the three 
breeds. Functional enrichment analysis of the target genes revealed that the candidate target genes were involved 
in key biological processes including maintaining cellular homeostasis, immune functions, proliferation of liver 
cells, and apoptosis of cells. Consistent with our results, some of the most abundant miRNAs have been identified 
as important modulators of liver cellular metabolic homeostasis, liver cell proliferation and development, liver cell 
death and regeneration in different  species26. For example, miR-143 which was the second most abundant miRNA 
in our studied samples was reported to be involved in glucose and insulin metabolism in  mice37. miR-148 and 
miR-26a are involved in the regulation of mice hepatocyte  proliferation38,39, a key process in liver tissue regenera-
tion. In human and mouse liver tissue, miR-148a40 and miR-2741, respectively, have been identified as regulators 
of liver detoxification. Based on our results and the conserved nature of the miRNA-mRNA interactions across 

Figure 6.  DE target genes and DE miRNAs interaction network generated using Cytoscape and regulation of 
both DE miRNAs and DE target genes in the liver tissue of low-RFI Kinsella Composite (KC) steers.



11

Vol.:(0123456789)

Scientific Reports |        (2020) 10:19309  | https://doi.org/10.1038/s41598-020-73885-5

www.nature.com/scientificreports/

mammalian  species24, we speculate that these highly expressed miRNAs in the bovine liver might play similar 
functions as those highlighted in other species. Furthermore, the involvement of these miRNAs in proliferation of 
different cells as well as cell death and survival is plausible, since the liver is in a constant state of self-regeneration 
or regrowth to recover hepatic tissue lost due to assault by pathogens, toxins, and exogenous  antigens42,43. Liver 
regeneration is a complex and highly regulated process that includes the initiation phase, the cell proliferation 
phase, and the regeneration termination phase, all of which are likely modulated by  miRNAs44,45. However, 
further molecular studies beyond Insilco predictions are needed to precisely validate the target genes of these 
miRNAs and their respective functions in cattle given the physiological differences between the species.

The liver is a central metabolic organ serving major biological functions in the mammalian body including 
nutrient (lipids, carbohydrates, proteins/amino acid, and vitamins and minerals) metabolism, xenobiotics and 
toxin metabolism, in addition to pathogen processing and growth  regulation46,47. MicroRNAs are known to 
modulate all these  functions26. Therefore, differential hepatic miRNA expression between efficient and inefficient 
animals can potentially contribute to the molecular variability for feed efficiency in beef cattle. In the current 
study we identified 39 differentially expressed (DE) known and novel miRNAs between the efficient and inef-
ficient steer groups in all the three studied populations. However, most of the identified DE miRNAs (94.9%) 
were breed specific. These findings were in line with the results in our mRNA differential expression  studies18,27 
that involved the same animals, where most of the DE genes (from 63.4% for Angus to 84.6% for KC) associ-
ated with  RFI18 and its component  traits27 were breed specific as well, which we speculate may be due to genetic 
uniqueness of the studied breeds. However, since we used a lower threshold or raw P-value < 0.05 to identify the 
differentially expressed miRNAs, further studies involving larger beef cattle populations and more divergent 
phenotype animal groups would be required to validate the current results.

Within each breed, most (i.e. 58.3% for Angus, 66.7% for Charolais, and 61.5% for KC) of the differentially 
expressed miRNAs were upregulated in low-RFI animals, and hence suggests a general expectation of reduced 
expression of their target genes. Compared with previous studies that have investigated the association of miRNA 
expression with feed  efficiency28,29, bta-miR-424-5p was the only miRNA that was commonly DE in our study and 
in the Austrian Angus  population28. However, in our study, bta-miR-424-5p was upregulated in the liver tissue of 
low-RFI animals (KC), whereas it was identified as downregulated in the liver tissue of low-RFI Angus  bulls28. 
This difference could be due to genetic, physiological or environmental differences between the animals studied 
in the two studies. It is also worth noting that Al-Hussein et al. sequenced two cDNA libraries of pooled RNA 
from efficient and inefficient  bulls28, whereas in our study we sequenced each individual cDNA library for each 
of the 60 studied steers, and this could also contribute to the differences between the two studies.

To investigate the potential biological importance of the DE miRNAs related to RFI within each breed, we 
predicted their target genes at a TargetScan context++ score percentile threshold of 99 for each breed. The key 
biological functions associated with the target genes included cell cycle, cellular growth and proliferation, cellular 
assembly and organization, lipid metabolism, protein synthesis, protein trafficking, cell-to-cell signaling and 
interaction, molecular transport, post-translational modification, and RNA post-transcription and translation 
modification. Of these functions, cell signaling, cellular growth and proliferation, lipid metabolism, protein 
synthesis, cellular development, cell death and survival molecular transport and protein synthesis have been 
previously reported to be associated with feed efficiency in beef cattle through liver transcriptomic  studies10,11,15,18. 
To further investigate the interactions between the identified DE miRNAs and the 72, 41, and 175 differen-
tially expressed (DE) genes that were previously identified in the same liver tissues of the same three animal 
 populations18, we identified only 1 (GNAZ), 2 (THEM4 and CES1), and 5 (PALMD, C12orf45, IRAK3, CITED4, 
and IL20RA) out of the 72, 41, and 175 DE genes as targeted DE genes for the DE miRNAs, respectively, in the 
Angus, Charolais, and KC breed populations using a TargetScan context++ score percentile threshold of 99 for 
each breed populaton. The low number of targeted DE genes by the DE miRNAs for each breed population would 
not allow for meaningful gene network and functional analysis. Thereore, we further used a lower threshold of 
context++ score percentile > 50 to predict targeted DE genes out of the 72, 41, and 175 DE genes of each breed 
population since a context++ score percentile > 50 is also considered as a high context score to shows that a spe-
cific site is more favorable than most other sites of the miRNA for target gene  identifiction48. With a context++ 
score percentile > 50, it was revealed that 61.1% (44 DE genes), 75.6% (31 DE genes) and 73.7% of the previously 
identified DE genes were predicted as potential targets of the DE miRNAs in Angus, Charolais, and KC steers, 
respectively. These target DE genes are mainly involved in lipid metabolism, molecular transport, small molecule 
biochemistry, energy production, carbohydrate metabolism, cellular movement, cell-to-cell signaling and interac-
tion, cell death and survival, amino acid metabolism and vitamin and mineral metabolism, implying that these 
identified DE miRNAs influence feed efficiency through differential modulation of these biological functions 
in the liver. From the DE miRNA–DE mRNA interaction networks in Figs. 4, 5 and 6, it can be observed that 
some miRNAs were predicted to target multiple DE genes, and some single genes were predicted to be targets 
for multiple miRNAs. These complex forms of miRNA–mRNA interactions emanate from the fact that a single 
miRNA using its seed region can bind to multiple sites in the 3′-UTRs of different genes (mRNAs), and also one 
target can have multiple binding sites for several  miRNAs23,49, hence allowing miRNAs to modulate multiple 
biological processes even though they are small in number compared with the mRNAs that they regulate.

To a large extent, we observed contrasting expression patterns in DE miRNAs compared with DE genes in 
the liver tissues as expected since the main mode of action of miRNAs is through promoting deadenylation 
of their target transcripts which conquently results into accelerated degradation of those target  mRNAs50. As 
an example, of the identified DE target genes for the upregulated miRNAs bta-miR-2285n, bta-miR-2285u, bta-
miR-449a and bta-miR-47 in Angus low-RFI animals, 52%, 63%, 75% and 62% were downregulated, respectively. 
For Charolais, of the predicted DE targets of upregulated miRNAs bta-miR-2285ai-5p, bta-miR-7859, bta-miR-
2284ac and bta-miR-449a in low-RFI animals, nearly 50%, 50%, 64% and 36%, respectively, were downregulated. 
In KC, of the predicted DE targets of upregulated DE miRNAs bta-miR-424-5p, bta-miR-223, bta-miR-449a, 
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and bta-miR-363 in low RFI animals, approximately 62%, 67%, 66% and 54%, respectively, were downregulated. 
However, we also observed a significant number of upregulated predicted target genes despite being targeted by 
multiple upregulated miRNAs. These observations could be attributed to the different mechanisms of miRNA 
gene regulation in mammalian cells including the augmentation of mRNA degradation through deadenylation 
and translation (proteins) repression when the miRNAs bind to the 3′ UTRs of their  targets50. Therefore, the 
observation that some DE genes predicted to be targeted by upregulated DE miRNAs were of downregulated 
in the liver tissue of low-RFI animals could due to the augmented mRNA degradation mode of regulation. On 
the other hand, protein translation repression could be the main miRNA gene expression modulation mode for 
those genes that retained high expression profiles despite being targeted by multiple upregulated DE miRNAs. 
To better understand the relationship of miRNA and mRNA, the correlation coefficients between miRNA and 
mRNA of the target genes were also investigated. In general the negative correlation coefficients between the 
DE miRNAs and their DE target genes largely confirmed the DE miNRA-target mRNA regulatory interaction 
patterns in Figs. 4, 5, and 6, while the magnitudes of correlation coefficients shed some light on strength of their 
DE miNRA-target mRNA regulatory interactions. For Angus, miRNA bta-miR-2285n has the strongest negative 
correlation with the target gene SCD (r = − 0.49, Supplementary File 6), which indicates that increased expression 
of the miRNA would reduce SCD mRNA to a greater extent. Similar strong negative correlations were also found 
between bta-miR-2346 and target gene CYP2C19 for Charolais, and between bta-miR-2483-5p and target gene 
ZBTB16 for KC. However, strong positive correlations were also detected between certain miRNA and target DE 
genes in the three breeds (Supplementary File 6), which suggests that these targeted genes are under different 
mechanisms of miRNA gene regulation to a greater extent. Although we used a context++ percentile score from 
greater than 50 to 100 as suggested by the Targetscan 7  documentation48 to predict targeted genes of miRNAs 
in this study, the interactions of the DE miNRA and target mRNAs should be interpreted with caution due to 
the nature of Insilco prediction that is subject to prediction accuracy. Hence, further molecular experiments are 
warranted to validate these interactions.

Conclusions
In the current study we employed RNAseq to perform hepatic miRNAome profiling of beef steers from Angus, 
Charolais, and KC populations. We identified a total of 588 expressed known bovine miRNAs, of which 89.8% 
were commonly expressed in the liver tissue of the animals from the three populations. Of these miRNAs, bta-
miR-192, bta-miR-143, bta-miR-148a, bta-miR-26a, bta-miR-30a-5p, bta-miR-22-3p, bta-miR-27b, bta-let-7f., 
bta-miR-27a-3p and bta-miR-101 had the greatest expression levels in all three breeds. We also detected 241 
novel bovine miRNAs expressed in the liver tissue, with 69.3% identified as expressed in only one of the three 
breeds whereas 12.9% were identified as expressed in all of the three populations. Differential miRNA expres-
sion analyses found 39 miRNAs that were associated with RFI, including five novel miRNAs (bta-miR-AB-2, 
bta-miR-AB-47, bta-miR-AB-15, bta-miR-AB-63, and bta-miR-AB-225). Most of the DE miRNAs were breed 
specific with only two miRNAs (bta-miR-449a and bta-miR-AB-2) being differentially expressed in all three 
breed populations. The predicted target genes of the identified DE miRNAs are involved in multiple cellular and 
molecular functions including cell cycle, cell death and survival, cell signaling, cellular growth and prolifera-
tion, lipid metabolism, protein synthesis, protein trafficking, cell morphology, cell-to-cell signaling and interac-
tion, cellular development, molecular transport, post-translational modification, amino acid and carbohydrate 
metabolism. Additionally, the identified DE miRNAs were found to target approximately 70% of the previously 
identified DE genes in the liver tissue of feed efficient and inefficient animals from the same populations. These 
target DE genes are mainly involved in lipid metabolism, molecular transport, small molecule biochemistry, 
energy production, carbohydrate metabolism, cellular movement, cell-to-cell signaling and interaction, cell death 
and survival, amino acid metabolism, and vitamin and mineral metabolism. Our results provide further insight 
into hepatic miRNAome expression profiles of beef cattle and their potential molecular regulatory mechanisms 
relating to feed efficiency in beef cattle.

Materials and methods
Animal populations and management. The population description and management practices of the 
experimental animals used in the current study have been presented in our recent  studies18,27. Briefly, the ani-
mals were raised and managed following the Canadian Council of Animal Care (CCAC) guidelines on the care 
and use of farm animals in research teaching and  testing51, and all the experimental procedures applied to the 
animals were approved by the University of Alberta Animal Care and Use Committee (AUP00000777). The ani-
mal populations included a total of 256 beef steers from two purebred populations (i.e. Angus and Charolais), 
and one Kinsella Composite (KC) beef steer population. The steers were born, raised and managed similarly at 
the Roy Berg Kinsella Ranch, University of Alberta, Canada. All the purebred Angus and Charolais cows were 
serviced through estrous synchronization and artificial insemination, followed by natural service by purebred 
Angus or Charolais bulls whose pedigree records were maintained by the Canadian Angus or Charolais Associa-
tion, respectively. The KC animals were produced through crossing Angus, Charolais, or Alberta Hybrid bulls 
with the University of Alberta’s hybrid dam line. The crossbreeding design used to generate the University of 
Alberta’s hybrid dam line was previously described by Goonewardene et al.52. Additionally, commercial cross-
bred bulls have been added to the KC herd since 2012 for natural service. The animals used in the current study 
were born between the months of April and May of 2014 and were castrated immediately after birth. The steer 
calves were maintained with their dams on pasture and weaned at an average age of about six months. The 
weaned animals were transitioned to a backgrounding diet composed of 80% barley silage, 17% barley grain, 
and 3% rumensin pellet supplement, and thereafter were fed set-up diets with gradually decreasing barley silage 
and increasing barley grain proportions for 3 weeks. Subsequently, the animals were introduced to the finishing 
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diet of 75% barley grain, 20% barley silage, and 5% rumensin pellet supplement (as fed basis) after the transition 
period of 3 weeks. The nutrient composition of the finishing diet is provided in the Table S6 in the Supplemen-
tary File 1.

GrowSafe feedlot test, phenotype measurement and RFI calculations. Between the months of 
April and August in 2015, 50 Angus, 48 Charolais, and 158 KC steers were measured for individual feed intake 
using the GrowSafe System (GrowSafe Systems Ltd., Airdrie, Alberta, Canada). A detailed description on meas-
uring each individual animal’s daily feed intake using the GrowSafe automated system has been described by 
Mao et al.53 and also provided in our previous  reports18,27. Briefly, the animals were tested for feed intake for a 
period ranging from 70 to 73 days, during which animals were fed on the finishing diet described above. Daily 
dry matter intake (DMI) of each animal was calculated as the average of the daily feed intake records over the 
test period and was standardized to 12 MJ ME per kg dry matter based on the energy content of the diet. Ini-
tial body weight (BW) and average daily gain (ADG) for each animal were obtained from a linear regression 
between serial body weight measurements and time (days) that were recorded on two consecutive days at the 
start of feedlot test, at approximately 14-day intervals during the feedlot test, and on two consecutive days prior 
to the end of the test. Metabolic mid-weight (MWT) was calculated as midpoint  BW0.75, where midpoint BW was 
computed as the sum of the initial BW of the animal and the product of its ADG multiplied by half the number 
of days under the feedlot test. RFI was calculated as the difference between the actual standardized daily DMI 
and the expected DMI that was predicted using the regression intercept and regression coefficients of ADG and 
MWT on actual standardized daily DMI as proposed by Koch et al.54.

Liver tissue collection. Tissue collection and processing procedures were previously described in our 
recent  studies18,27. Briefly, all animals used in the current study were slaughtered at the Agriculture and Agri-
Food Canada (AAFC) Lacombe Research Centre (Lacombe, AB) between July and September of 2015. Animals 
were considered ready for slaughter at an average back-fat thickness of 8 mm between the 12th and 13th ribs, 
which was measured using an Aloka 500 diagnostic real time ultrasound machine with a 17 cm 3.5 MHz linear 
array transducer. For slaughter, animals were first stunned by captive bolt and then exsanguinated. The animals 
were on average slaughtered at the age of 494 ± 3, 518 ± 4, and 457 ± 4 days for Angus, Charolais, and KC, respec-
tively. The liver of each animal was collected immediately after slaughter and dissected at relatively the same 
location on the right lobe, and the fibrous capsule was removed from the sliced liver tissue samples. The sam-
ple tissues were further dissected into smaller portions that were bagged separately in plastic re-closable bags, 
labelled, flash frozen in liquid nitrogen, and transported on dry ice to the laboratory within 6 h, where they were 
stored at − 80 °C until total RNA extraction.

Total RNA extraction. Total RNA extraction was performed on 20 of the liver tissue samples (10 with the 
highest and 10 with the lowest RFI phenotype values) from each breed as described in our recent  studies18,27. 
Each of the selected liver tissue samples were pulverized into a fine powder using liquid nitrogen and a pre-
chilled mortar and pestle on dry ice. Total RNA containing small RNAs was then extracted using the Qiagen 
RNeasy Plus Universal Mini Kit (Qiagen, Toronto, ON, USA) according to the manufacturer’s instructions. A 
NanoDrop 2000 Spectrophotometer (Thermo Scientific, Wilmington, DE, USA) was used to quantify the RNA. 
We obtained total RNA with an average concentration of 1851.8 ng/µl per sample, and with absorbance ratios 
(A260/280) ranging between 1.8 and 2.0. RNA integrity was confirmed using a TapeStation-Agilent instrument 
(Agilent Technologies Canada, Mississauga, ON, USA). RNA integrity number (RIN) values for all samples were 
higher than 8 which deemed them to be high quality and suitable for cDNA library preparation and downstream 
transcriptomic profiling.

Construction of cDNA libraries and sequencing. In total 60 cDNA libraries were prepared and 
sequenced at the Clinical Genomics Centre (Toronto, ON, Canada) as described in our recent  studies18,27. The 
libraries were prepared using the Illumina Truseq Small RNA Library Prep Kit (Illumina, San Diego, CA, USA) 
from 1 µg of total RNA. Initially, an RNA 3′ adapter was ligated to the 3′ ends of the RNAs in the total RNA 
samples using a T4 RNA Ligase 2 enzyme. Thereafter, an RNA 5′ adapter was added to the 5′ ends of the 3′ adap-
tor-ligated-RNAs using a T4 RNA Ligase. In this experiment, the RNA 3′ and RNA 5′ adapters were designed 
to specifically target miRNAs and other small RNAs resulting from similar biogenic processing. The 5′ and 3′ 
adapter ligated RNA was then reverse transcribed using the SuperScript II Reverse Transcriptase (Thermo Fisher 
Scientific, San Jose, CA, USA) and the RNA RT primer to generate single stranded cDNA. The cDNA was then 
PCR amplified with a universal RNA PCR primer, and a second RNA PCR primer containing a six-nucleotide 
indexing sequence to allow multiplexed sequencing of multiple samples on the same flow cell lane. The cDNA 
libraries were purified via gel electrophoresis using a 6% Novex TBE gel in Novex TBE running buffer which was 
run for 60 min at 145 V. Based on high resolution DNA ladder, the 160 bp and 145 bp cDNA bands were excised 
using a razor blade under UV light illumination for subsequent sequencing. Prior to sequencing, all the libraries 
were diluted to 2 nM. Thereafter equal volumes from each sample cDNA were used to construct four sequencing 
pools of 15 cDNA libraries each. The pooled cDNA libraries were sequenced on two flow cells using the Illumina 
Hiseq 2500 sequencing platform under Rapid run mode (Illumina, San Diego, CA, USA), with an expected 
read length of 50 bp [1 × 50 bp single read (SR)]. After sequencing, the raw sequence data were demultiplexed 
into individual FASTQ format files for each sample using the Illumina bcl2fastq-v2.17.1.14 conversion software 
(Illumina, San Diego, CA, USA). All phenotype and raw FASTQ format sequence data files have been deposited 
to the Gene Expression Omnibus (GEO) under the accession number GSE144432.
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Bioinformatic sequence data processing and miRNA expression profiling. Raw sequence 
reads were initially assessed for sequencing quality using FASTQC version 0.11.755 as described in our recent 
 studies18,27. The reads were evaluated for quality based on multiple parameters such as average read length, adap-
tor content, per sequence GC content, and per base sequence quality scores. Thereafter, the Illumina 3′ adap-
tor sequence (TGG AAT TCT CGG GTG CCA AGG) was clipped from all the raw read sequences using cutadapt 
version 1.1656. In this study, reads of lengths shorter than 15 bp, or longer than 28 bp were removed as short or 
long reads, respectively. The retained reads were filtered for other bovine short RNA species including ribosomal 
RNAs (rRNAs), transfer RNAs (tRNAs), small nuclear RNAs (snRNAs), and small nucleolar RNAs (snoRNAs), 
downloaded from the Rfam database via RNAcentral a non-coding RNA database (https ://rnace ntral .org/searc 
h?q=exper t_db:%22Rfa m%22, accessed July 2018). The final processed sequence reads were re-evaluated for 
quality using FASTQC version 0.11.755.

To profile both novel and known miRNA expression in the samples from the cleaned sequence data, the miR-
Deep2 package version 2.0.0.8  modules33 were used together with the UMD3.1 bovine genome from Ensembl 
version 93, the known bovine mature miRNA sequences and their precursor sequences from the miRBase 
database (release 22)57. The mapper module (mapper.pl) with default parameters was used to collapse reads of 
the sequences into clusters, and then bowtie-1.1.1 short sequence  aligner58 was employed to align the collapsed 
reads to the indexed UMD3.1 reference genome. Using default parameters and input files including the reference 
genome, collapsed reads versus reference genome alignment, known bovine (and human) mature miRNAs and 
their precursor sequences (including the hairpin structures), and Bos taurus (bta) as the species of interest, all 
known bovine miRNAs were quantified by the miRDeep2 module (miRDeep2.pl), hence producing read counts 
for each individual sample.

Subsequently, miRDeep2 was used to predict possible novel miRNAs and their respective precursors based on 
their read alignment to the bovine reference  genome33. Genomic regions stacked with aligned reads were excised 
as potential precursors and evaluated by the RNAfold tool within ViennaRNA-1.8.459 for their potential to form 
stable secondary structures (hairpins), their ability to be partitioned into mature, loop and star strand, and their 
base pairing in the mature miRNA region. Subsequently, for each predicted miRNA, a mature miRNA consensus 
sequence, a precursor sequence, RNAfold P-value, the miRDeep2 score, and the probability that the predicted 
miRNA was a true positive were estimated and produced as outputs. Additionally, for each predicted novel 
miRNA, mirDeep2 outputs their hairpin structure of the precursor sequence and the read counts of each sample.

Differential miRNA expression analysis. Initially, counts for each mature miRNA from more than one 
precursor were averaged. Thereafter, all miRNAs that had less than 10 total read counts across the studied sam-
ples within each breed were filtered out. Then miRNA expression variation patterns between 20 samples in each 
breed were visualized through a principle component analysis of the read counts from the mirDeep2 mod-
ule using the DESeq2 Bioconductor  package60 and the ggplot2  R61 package. We performed differential miRNA 
expression for all expressed known mature miRNAs and top 25 expressed novel miRNAs in each breed. Twelve 
samples including six samples with extreme high and six samples with extreme low-RFI phenotypes that showed 
consistent miRNA expression (as compared to all other samples in the same breed) were considered for dif-
ferential miRNA expression using the egdeR Bioconductor package in  R62. To reduce false positive rates of the 
analyses, miRNAs within samples from each of the breeds that had less than one count per million (CPM) in 
at least six samples (half of the analyzed samples) were filtered out from the analyses, as proposed by Anders 
et al.63. For the retained miRNAs, their counts were normalized using the TMM  method64. To test for differential 
miRNA expression between high and low-RFI steer groups from each breed using the egdeR package in  R62, the 
normalized counts were modeled using a generalized linear model under a negative binomial distribution with 
the high-RFI group as a reference. MicroRNAs were deemed differentially expressed (DE) at a P-value less than 
0.05, and fold change (FC) greater than 1.5.

Validation of differentially expressed miRNAs. Six differentially expressed miRNAs with relatively 
high expression levels per sample were selected for validation of the small RNAseq results. These included bta-
miR-2415-3p, bta-miR-133a, and bta-miR-2419-5p for Charolais, and bta-miR-424-5p, bta-miR-223, and bta-
miR-155 for KC. bta-miR-192 and bta-miR-93 were selected as endogenous controls for Charolais whereas bta-
miR-2284 × and bta-let-7b were selected as reference miRNA genes for KC based on their expression abundance 
and stability across samples (average M values of 0.18 for KC and 0.22 for Charolais), which were determined 
using geNorm in the GenEx Software v.5.2.7.44 (MultiD Analyses AB, Gothenburg, Sweden). Relative expres-
sions of the selected miRNAs were obtained through stem-loop RT-TaqMan  qPCR65 from the same total RNA 
as was used for the small RNA sequencing. Reverse-transcription (RT) stem-loop primers and TaqMan qPCR 
assays (containing the probe and forward and reverse primers) were purchased from Thermo Fisher Scientific 
(https ://www.therm ofish er.com). RT primer IDs and TaqMan qPCR assay IDs for each validated internal control 
are provided in Table S7 of Supplementary File 1. Serial dilutions of pooled cDNA samples were used to deter-
mine amplification efficiencies using the equation E = − 1 + 10(−1/slope), and the slope was calculated by plotting 
the linear curve of cycle threshold  (CT) values against the log  dilutions66. Primers had PCR efficiencies between 
89 and 110%.

The reverse transcription reactions for each sample including no RNA template controls were performed 
using the TaqMan MicroRNA Reverse Transcription Kit. Each sample reaction contained 5 µl of total RNA 
(2 ng/µl), 1 µl of MultiScribe Reverse Transcriptase enzyme, 3 µl of stem-loop RT primer, 0.15 µl of dNTP mix, 
1.5 µl of 10 × RT buffer, 0.19 µl of RNase inhibitor and 4.16 µl of nuclease free water. The 15 µl reactions were 
incubated in an Eppendorf 5331 Mastercycler Gradient v2.30.31 thermocycler (Marshall Scientific, Hampton, 
NH) for 30 min at 16 °C, 30 min at 42 °C and 5 min at 85 °C. Thereafter, real-time quantitative PCR (qPCR) was 

https://rnacentral.org/search?q=expert_db:%22Rfam%22
https://rnacentral.org/search?q=expert_db:%22Rfam%22
https://www.thermofisher.com
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performed using the TaqMan Fast Advanced Master Mix Protocol. The 20 µl qPCR reaction contained 10 µl of 
TaqMan Fast Advanced Master Mix, 1 µl of TaqMan MicroRNA Assay, 1.33 µl of RT reaction product (cDNA), 
and 7.67 µl of nuclease free water. All qPCR reactions were performed in triplicate on a MicroAmp Fast Optical 
96-Well Reaction Plate in the Applied Biosystems 7500 Fast Real-Time PCR System v2.0.1 (Applied Biosystems, 
Foster City, California, USA). The reactions were incubated for 2 min at 50 °C, for 20 s at 95 °C, and followed 
subsequently by 40 PCR cycles of 3 s at 95 °C for denaturation and 30 s at 60 °C for annealing and extension. 
Threshold cycle  (CT) values from the Real-Time PCR thermocycler were then imported into GenEx Software 
v.5.2.7.44 (MultiD Analyses AB, Göteborg, Sweden). The  CT values were adjusted to account for inter-plate 
variation using the inter-plate calibrator sample included on the plates and to account for amplification efficien-
cies. The adjusted  CT values of the replicates were averaged, and then normalized to the endogenous controls of 
miRNA’s (reference genes) expression. Lastly  Log2 relative quantities were calculated to the average (for all test 
samples)  CT value. The relative quantities were then analyzed for differential miRNA expression between the 
high and low-RFI steers using a two tailed t-test.

miRNA target genes prediction and functional enrichment analyses. Target genes prediction 
was performed using three TargetScan version 7.0 Perl  scripts48 downloaded from https ://www.targe tscan .org/
cgi-bin/targe tscan /data_downl oad.vert7 2.cgi (Accessed July 2018) for the top expressed known miRNAs and 
top most expressed novel miRNAs that were commonly expressed across the three breeds. TargetScan predicts 
miRNA target genes based on a quantitative model that scores candidate target genes based on 14 features 
including 3′-UTR target-site abundance, predicted seed-pairing stability, identity of the nucleotide at position 1 
of the small RNA (sRNA), identity of the nucleotide at the 8th position of the sRNA, identity of the nucleotide 
at the 8th position of the target site, local AU content near the target site, supplementary pairing at the miRNA 
3′ end, predicted structural accessibility, minimum distance of the site from the stop codon or polyadenyla-
tion site, probability of target site conservation, open reading frame (ORF) length, 3′-UTR length, number of 
offset-6mer sites in the 3′ UTR, and the number of 8mer sites in the  ORF48. Firstly, we predicted the conserved 
and non-conserved target sites using the targetscan_70.pl script by providing all the known gene transcripts 
UTR sequence alignments and the miRNA family information as inputs. The miRNA family information file 
included the miRNA family IDs, the seed sequence (from 2nd position nucleotide to 8th position nucleotide 
5′ of miRNA sequences), and the NCBI IDs of 8 species (cow, sheep, domestic goat, horse, human, mouse, rat 
and pig). Thereafter, we used the targetscan_70_BL_bins.pl script and the targetscan_70_BL_PCT.pl script to 
calculate the branch length and the conservation probability of the conserved target sites. Finally, in combina-
tion with RNAplfold-2.4.1159, the targetscan_70_context_scores.pl script was used to calculate context++ scores 
for the miRNA target genes based mainly on the 14 attributes mentioned above. Subsequently, potential target 
genes for the most abundant miRNAs, and DE miRNAs of the 99th context++ score or > 50 context++ score 
percentile rank were considered for functional enrichment analysis using Ingenuity Pathway Analysis (IPA) 
web-based software (Redwood City, CA; https ://www.qiage nbioi nform atics .com/produ cts/ingen uity-pathw ay-
analy sis/, IPA Spring 2019 release). In addition, Pearson correlation coefficients of most abundant miRNAs or 
DE miRNAs expression with mRNA expression of their predicted target genes that were expressed in the same 
animals of our previous  study18 were calculated.

Interaction network analyses between DE miRNA and DE genes. To explore potential interac-
tions between DE miRNAs identified in this study and the DE genes between high and low-RFI animals that 
were reported in the same populations reported by Mukiibi et al.18, a context++ score greater than the 50 per-
centile rank for the DE miRNA target genes was used. For each breed, the DE genes identified as targets of the 
DE miRNAs at this threshold were retained for DE mRNA–DE miRNA (Target-miRNA) interaction network 
visualization using Cytoscape version 3.7.167, and Pearson correlation coefficients of the DE miRNA expression 
with mRNA expression of the targeted DE genes were calculated. Furthermore, IPA was used to perform func-
tional enrichment analyses for the targeted DE genes to identify major biological functions that are potentially 
differentially modulated by the identified DE miRNAs.
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