1,199 research outputs found

    Experimentally determined Si isotope fractionation between zircon and quartz

    Get PDF
    This work was supported by NSF grants EAR-1447404 and EAR-1650033, and NERC grant NE/R002134/1. PS would also like to cite the support of a Carnegie Trust Research Incentive Grant, which helped the setup of various isotope techniques in the St Andrews Isotope Geochemistry (STAiG) laboratories. FM thanks the ERC under the European Community’s H2020 framework program/ERC grant agreement # 637503 (Pristine) and for the UnivEarthS Labex program (no. ANR-10-LABX-0023 and ANR-11-IDEX-0005-02). Parts of this work were supported by IPGP multidisciplinary program PARI, and by Region île-de-France SESAME Grant (no. 12015908).The silicon isotope composition of detrital quartz and zircon have the potential to inform us about secular changes to the silica cycle and weathering reactions on Earth. However, inferring source melt Si isotope composition from out-of-context minerals is hampered by the fact that, to-date, there is limited Si isotope equilibrium fractionation data for minerals. Here, we report experimental data to constrain Si isotope equilibrium fractionation between zircon and quartz, using two fundamentally different strategies, but with the same experimental design. First, zircon and quartz were hydrothermally synthesized from Zr(OH)4 and SiO2 at 1.5 GPa and temperatures of 725, 800, and 900 oC. The second experimental strategy utilized the three-isotope method; the starting materials consisted of natural zircon and isotopically-labelled SiO2. Three sets of hydrothermal time-series experiments were conducted at the same pressure and temperatures as the direct synthesis experiments. For all experiments, quartz and zircon were separated and 30Si/28Si and 29Si/28Si ratios were measured by solution multi-collector inductively coupled plasma mass spectrometry. The three-isotope method, which provides the best indicator of equilibrium fractionations, yields the following relationship: Δ30Si(qtz-zrc) = (0.53±0.14) × 106 /T2 where Δ30Si(qtz-zrc) is the relative difference in 30Si/28Si between quartz and zircon in permil, T is temperature in K, and the error is 2 s.e. This relationship can be used to calculate the fractionation between zircon and other phases, and to estimate the Si isotope composition of the melt from which a zircon crystallized. The results may be used to assess equilibrium-disequilibrium isotope fractionations between quartz and zircon and co-existing phases in igneous rocks. These data can also be applied to out-of-context zircon (and quartz) to estimate the isotope composition of the host rock. Zircons crystallizing from a melt derived from purely igneous sources – i.e., without the involvement of “weathered” material – are expected to display a δ30SiNBS-28 (permil deviation of the 30Si/28Si from the NBS-28 standard) range from -0.7 to -0.35‰. Deviations from this range indicate assimilation of non-igneous (i.e., sedimentary) material in the melt source.PostprintPeer reviewe

    Potassium isotope fractionation during magmatic differentiation of basalt to rhyolite

    Get PDF
    Authors thank the McDonnell Center for the Space Sciences and the UK National Environment Research Council for their support. Funding for this work was provided in part by NERC grant NE/R002134/1.High-temperature equilibrium and kinetic stable isotope fractionation during partial melting, fractional crystallization, and other igneous differentiation processes has been observed in many isotope systems, but due to the relative nascence of high-precision analytical capabilities for K, it is still unclear whether igneous processes induce systematic and resolvable K isotope fractionation. In this study, we look to the natural laboratory of Hekla volcano in Iceland to investigate the behavior of K isotopes during magmatic differentiation of basalt to rhyolite. Using a novel MC-ICP-MS method, we analyzed 24 geochemically diverse samples from Hekla, including 7 basalts, 8 basaltic andesites, 3 andesites, 4 dacites, and 2 rhyolites, along with 2 additional samples from Burfell, Iceland, for comparison (1 basalt and 1 trachyte). We observed extremely limited variation of 41K/39K ratios throughout our suite of samples, which is not resolvable within the best current analytical uncertainty. The average value of all samples is δ41KNIST SRM3141a = −0.46 ± 0.07‰ (2sd). This value agrees with the Bulk Silicate Earth value previously defined by average global oceanic basalts in literature. The lack of variation throughout this suite of samples from a single volcano system indicates that K does not fractionate during magmatic differentiation (of basalt to rhyolite) through processes such as partial melting and fractional crystallization. This conclusion is important to the estimation of the Bulk Silicate Earth K isotope composition, to placing a more robust estimate on the composition bulk continental crust, and to fostering a better understanding of the behavior of K isotopes during differentiation of the terrestrial planets.PostprintPeer reviewe

    Book reviews

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45714/1/11336_2005_Article_BF02289702.pd

    Accelerating Bayesian hierarchical clustering of time series data with a randomised algorithm

    Get PDF
    We live in an era of abundant data. This has necessitated the development of new and innovative statistical algorithms to get the most from experimental data. For example, faster algorithms make practical the analysis of larger genomic data sets, allowing us to extend the utility of cutting-edge statistical methods. We present a randomised algorithm that accelerates the clustering of time series data using the Bayesian Hierarchical Clustering (BHC) statistical method. BHC is a general method for clustering any discretely sampled time series data. In this paper we focus on a particular application to microarray gene expression data. We define and analyse the randomised algorithm, before presenting results on both synthetic and real biological data sets. We show that the randomised algorithm leads to substantial gains in speed with minimal loss in clustering quality. The randomised time series BHC algorithm is available as part of the R package BHC, which is available for download from Bioconductor (version 2.10 and above) via http://bioconductor.org/packages/2.10/bioc/html/BHC.html. We have also made available a set of R scripts which can be used to reproduce the analyses carried out in this paper. These are available from the following URL. https://sites.google.com/site/randomisedbhc/

    Homogenising the upper continental crust : the Si isotope evolution of the crust recorded by ancient glacial diamictites

    Get PDF
    This work was supported by PhD funding to MM by the University of St Andrews School of Earth and Environmental Sciences and the Handsel scheme, as well as by NERC grant NE/R002134/1 to PS and NSF grant EAR-1321954 to RR and RG.Twenty-four composite samples of the fine-grained matrix of glacial diamictites deposited from the Mesoarchaean to Palaeozoic have been analysed for their silicon isotope composition and used to establish, for the first time, the long-term secular Si isotope record of the compositional evolution of upper continental crust (UCC). Diamictites with Archaean and Palaeoproterozoic Nd model ages show greater silicon isotope heterogeneity than those with younger model ages (irrespective of depositional age). We attribute the anomalously light Si isotope compositions of some diamictites with Archaean model ages to the presence of glacially milled banded iron formation (BIF), substantiated by the high iron content and Ge/Si in these samples. We infer that relatively heavy Si isotope signatures in some Palaeoproterozoic diamictites (all of which have Archaean Nd model ages) are due to contribution from tonalite-trondhjemite-granodiorites (TTGs), evidenced by the abundance of TTG clasts. By the Neoproterozoic (with model ages ranging from 2.3 to 1.8 Ga), diamictite Si isotope compositions exhibit a range comparable to modern UCC. This reduced variability through time is interpreted as reflecting the decreasing importance of BIF and TTG in post-Archaean continental crust. The secular evolution of Si isotopes in the diamictites offers an independent test of models for the emergence of stable cratons and the onset of horizontal mobile-lid tectonism. The early Archaean UCC was heterogeneous and incorporated significant amounts of isotopically light BIF, but following the late Archaean stabilisation of cratons, coupled with the oxygenation of the atmosphere that led to the reduced neoformation of BIF and diminishing quantities of TTGs, the UCC became increasingly homogeneous. This homogenisation likely occurred via reworking of preexisting crust, as evidenced by Archaean Nd model ages recorded in younger diamictites.Publisher PDFPeer reviewe

    Homogeneous distribution of Fe isotopes in the early solar nebula

    No full text
    International audienceTo examine the iron (Fe) isotopic heterogeneities of CI and ordinary chondrites, we have analyzed several large chips (approximately 1 g) from three CI chondrites and three ordinary chondrites (LL5, L5, and H5). The Fe isotope compositions of five different samples of Orgueil, one from Ivuna and one from Alais (CI chondrites), are highly homogeneous. This new dataset provides a δ56Fe average of 0.02 ± 0.04‰ (2SE, n = 7), which represents the best available value for the Fe isotopic composition of CI chondrites and probably the best estimate of the bulk solar system. We conclude that the homogeneity of CI chondrites reflects the initial Fe isotopic homogeneity of the well-mixed solar nebula. In contrast, larger (up to 0.26‰ in δ56Fe) isotopic variations have been found between separate approximately 1 g pieces of the same ordinary chondrite sample. The Fe isotope heterogeneities in ordinary chondrites appear to be controlled by the abundances of chondritic components, specifically chondrules, whose Fe isotope compositions have been fractionated by evaporation and recondensation during multiple heating events

    Silicon isotopes reveal recycled altered oceanic crust in the mantle sources of ocean island basalts

    Get PDF
    EP thanks the Chateaubriand STEM fellowship program for funding. FM thanks the European Research Council under the European Community’s H2020 framework program/ERC grant agreement #637503 (Pristine) and the Agence Nationale de la Recherche for a chaire d’Excellence Sorbonne Paris Cité (IDEX13C445) and for the UnivEarthS Labex program (ANR-10-LABX-0023 and ANR-11-IDEX-0005-02). PS thanks the support of the Marie Curie FP7-IOF fellowship “Isovolc”.The study of silicon (Si) isotopes in Ocean Island Basalts (OIB) has the potential to discern between different models for the origins of geochemical heterogeneities in the mantle. Relatively large (∼several per mil per atomic mass unit) Si isotope fractionation occurs in low-temperature environments during biochemical and geochemical precipitation of dissolved Si, where the precipitate is preferentially enriched in the lighter isotopes relative to the dissolved Si. In contrast, only a limited range (∼tenths of a per mil) of Si isotope fractionation has been observed from high-temperature igneous processes. Therefore, Si isotopes may be useful as tracers for the presence of crustal material within OIB mantle source regions that experienced relatively low-temperature surface processes in a manner similar to other stable isotope systems, such as oxygen. Characterizing the isotopic composition of the mantle is also of central importance to the use of the Si isotope system as a basis for comparisons with other planetary bodies (e.g., Moon, Mars, asteroids). Here we present the first comprehensive suite of high-precision Si isotope data obtained by MC-ICP-MS for a diverse suite of OIB. Samples originate from ocean islands in the Pacific, Atlantic, and Indian Ocean basins and include representative end-members for the EM-1, EM-2, and HIMU mantle components. On average, δ30Si values for OIB (−0.32 ± 0.09‰, 2 sd) are in general agreement with previous estimates for the δ30Si value of Bulk Silicate Earth (−0.29 ± 0.07‰, 2 sd; Savage et al., 2014). Nonetheless, some small systematic variations are present; specifically, most HIMU-type (Mangaia; Cape Verde; La Palma, Canary Islands) and Iceland OIB are enriched in the lighter isotopes of Si (δ30Si values lower than MORB), consistent with recycled altered oceanic crust and lithospheric mantle in their mantle sources.PostprintPeer reviewe

    Silicon isotopes in an Archaean migmatite confirm seawater silicification of TTG sources

    Get PDF
    Funding: This work was made possible by PhD funding to MM by the University of St Andrews School of Earth and Environmental Sciences and the Handsel scheme, in addition to NERC grant NE/R002134/1 to PS.Unraveling ancient melting processes is key to understanding how the earliest, tonalite-trondhjemite-granodiorite (TTG)-dominated continental crust formed from partial melting of amphibolite. Application of silicon isotope analysis to ancient crust reveals that Archaean TTGs exhibit consistently high Si isotope values (δ30Si) compared to modern granitoids, attributed to seawater-derived silica introduced by either (a) partial melting of variably silicified basalts or (b) assimilation of authigenic silica-rich marine lithologies in the melt source. However, both mechanisms can introduce highly variable δ30Si, conflicting with the strikingly consistent δ30Si compositions of Archaean TTGs. This study investigates an alternative model, whereby the distinct mineralogy and chemistry of TTG melt sources impart a distinct silicon isotope composition to the melt, compared with “modern” granitoids. We measured δ30Si in component parts (melanosome and leucosome) of an Archaean (2.7 Ga) mafic migmatite and coeval amphibolites and mafic granulites from the Kapuskasing uplift, Canada, to explore how Si isotopes fractionate during incipient TTG melt formation. Our data reveal leucosome (i.e., melt) exhibits consistently high δ30Si values compared to a relatively isotopically lighter melanosome (i.e., residuum). We also derive inter-mineral silicon isotope fractionation factors for mineral separates that agree well with those of ab initio estimates for the same minerals and show that the magnitude of equilibrium fractionation between TTG source rock and melt replicates that in Phanerozoic granitoids. We conclude the effects of magmatic differentiation on δ30Si have remained consistent throughout Earth history, meaning that Archaean TTGs must require a source isotopically heavier than unaltered basalt, as reflected by our amphibolites and mafic migmatite components. The consistently heavy δ30Si of seawater through Earth history, and the high SiO2 content of amphibolites relative to coeval leucosome-free granulites in our study area, imply seawater silicification is the source of the observed high δ30Si. Thus, the consistently heavy Si isotope compositions measured in Archaean melt products define a unique aspect of ancient crust formation: that of the silicification of TTG source rock, implying the intrinsic involvement of a primeval hydrosphere.Publisher PDFPeer reviewe
    corecore