3,855 research outputs found

    Mechanistic Studies of Escherichia Coli Transketolase

    Get PDF
    The enzyme transketolase is found in nature as part of the Pentose Phosphate Pathway to rearrange large sugar phosphates. It also is an important enzyme for carboncarbon bond formation for industrial biocatalysis. The work presented in this thesis describes the purification, crystallisation, characterisation and structural determination of the recombinant Escherichia coli transketolase complexed with the substrate hydroxypyruvate and potential inhibitor fluoropyruvate. The native transketolase and the transketolase-hydroxypyruvate structures were solved to a 1.18 and 1.05 Å resolution respectively. The transketolase structures show a chain of ordered water molecules spanning a distance of 20 Å between the two active sites. The water molecules are linked via a network of hydrogen bonds and they are proposed to facilitate proton transfer between the two-thiamine pyrophosphate molecules, thereby providing a method of communication between the two active sites of the enzyme. The transketolase-hydroxypyruvate structure shows the hydroxypyruvate substrate forming a covalent bond to the thiamine pyrophosphate thereby creating a a,b-dihydroxyethyl–thiamine pyrophosphate complex within the enzyme active site. The novel transketolase-fluoropyruvate structure solved to a 1.60 Å resolution, it produced a snapshot image of the ketol donor prior to formation of the active enamine intermediate. The trapped fluoropyruvate molecule is shown to form an angle that varies from the accepted Burgi-Dunitz angle of 109.5° for nucleophilic attack. However, this is inconclusive due to the low occupancy of the fluoropyruvate. In addition, kinetic studies were performed on the recombinant E. coli transketolase to investigate the inhibitory role of fluoropyruvate during the enzymatic reaction. The active site recombinant E. coli transketolase mutants H26Y and D469Y have been also been purified and characterised. The mutant H26Y complexed with fluoropyruvate was crystallised and its structure determined to 1.66 Å resolution. This structure has given an insight into why this mutation results in the formation of the opposite D-enantiomer of erythrulose rather than the L-erythrulose produced by the wild-type transketolase enzyme. The thesis also includes the purification, crystallisation, characterisation and Xray diffraction studies of the commercially useful oxygenating enzyme, 2,5- diketocamphane 1,2-monooxygenase from Pseudomonas putida. The recombinant dimeric oxygenase component of this enzyme has been crystallised and its structure solved to 1.4 Å resolution.EPSR

    The Next Wave: Federal Regulatory, Intellectual Property, and Tort Liability Considerations for Medical Device Software, 2 J. Marshall Rev. Intell. Prop. L. 259 (2003)

    Get PDF
    Counsel for the medical software technologist faces an unusually complex, ongoing, high-stakes challenge. Counsel operates in a special field of commercial, legal and regulatory forces: (1) intellectual property laws which govern the expression and protection of commercial rights derived from advances in medical science and technology; (2) existing and proposed contracts/warranty laws that govern technological commercial relationships; (3) negligence, professional liability, and product liability laws that govern the marketing of medical technologies; and, (4) a new body of regulation derived from the power of the federal government to indirectly provide for the safety, effectiveness, privacy, and security of medical technologies offered to the American public. Against that backdrop, the author provides an illustration of the commercialization of a new medical software technology and suggests a general approach to resolving the primary issues facing the medical software technologist

    Australian Forensic Computing Investigation Teams: Research on Competence

    Get PDF

    A simple Bayesian estimate of direct RNAi gene regulation events from differential gene expression profiles.

    Get PDF
    RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.BACKGROUND: Microarrays are commonly used to investigate both the therapeutic potential and functional effects of RNA interfering (RNAi) oligonucleotides such as microRNA (miRNA) and small interfering RNA (siRNA). However, the resulting datasets are often challenging to interpret as they include extensive information relating to both indirect transcription effects and off-target interference events. METHOD: In an attempt to refine the utility of microarray expression data when evaluating the direct transcriptional affects of an RNAi agent we have developed SBSE (Simple Bayesian Seed Estimate). The key assumption implemented in SBSE is that both direct regulation of transcription by miRNA, and siRNA off-target interference, can be estimated using the differential distribution of an RNAi sequence (seed) motif in a ranked 3' untranslated region (3' UTR) sequence repository. SBSE uses common microarray summary statistics (i.e. fold change) and a simple Bayesian analysis to estimate how the RNAi agent dictated the observed differential expression profile. On completion a trace of the estimate and the location of the optimal partitioning of the dataset are plotted within a simple graphical representation of the 3'UTR landscape. The combined estimates define the differential distribution of the query motif within the dataset and by inference are used to quantify the magnitude of the direct RNAi transcription effect. RESULTS: SBSE has been evaluated using five diverse human RNAi microarray focused investigations. In each instance SBSE unambiguously identified the most likely location of the direct RNAi effects for each of the differential gene expression profiles. CONCLUSION: These analyses indicate that miRNA with conserved seed regions may share minimal biological activity and that SBSE can be used to differentiate siRNAs of similar efficacy but with different off-target signalling potential.Peer Reviewe
    • …
    corecore