MECHANISTIC STUDIES OF ESCHERICHIA COLI TRANSKETOLASE

Submitted by

Mathew Martin

to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Chemistry (December 2008).

This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University.

when

Mathew Martin

Abstract

The enzyme transketolase is found in nature as part of the Pentose Phosphate Pathway to rearrange large sugar phosphates. It also is an important enzyme for carboncarbon bond formation for industrial biocatalysis.

The work presented in this thesis describes the purification, crystallisation, characterisation and structural determination of the recombinant Escherichia coli transketolase complexed with the substrate hydroxypyruvate and potential inhibitor fluoropyruvate. The native transketolase and the transketolase-hydroxypyruvate structures were solved to a 1.18 and 1.05 Å resolution respectively. The transketolase structures show a chain of ordered water molecules spanning a distance of 20 Å between the two active sites. The water molecules are linked via a network of hydrogen bonds and they are proposed to facilitate proton transfer between the two-thiamine pyrophosphate molecules, thereby providing a method of communication between the two active sites of the enzyme. The transketolase-hydroxypyruvate structure shows the hydroxypyruvate substrate forming a covalent bond to the thiamine pyrophosphate thereby creating a α,β -dihydroxyethyl-thiamine pyrophosphate complex within the enzyme active site. The novel transketolase-fluoropyruvate structure solved to a 1.60 Å resolution, it produced a snapshot image of the ketol donor prior to formation of the active enamine intermediate. The trapped fluoropyruvate molecule is shown to form an angle that varies from the accepted Burgi-Dunitz angle of 109.5° for nucleophilic attack. However, this is inconclusive due to the low occupancy of the fluoropyruvate. In addition, kinetic studies were performed on the recombinant E. coli transketolase to investigate the inhibitory role of fluoropyruvate during the enzymatic reaction.

The active site recombinant *E. coli* transketolase mutants H26Y and D469Y have been also been purified and characterised. The mutant H26Y complexed with fluoropyruvate was crystallised and its structure determined to 1.66 Å resolution. This structure has given an insight into why this mutation results in the formation of the opposite D-enantiomer of erythrulose rather than the L-erythrulose produced by the wild-type transketolase enzyme.

The thesis also includes the purification, crystallisation, characterisation and Xray diffraction studies of the commercially useful oxygenating enzyme, 2,5diketocamphane 1,2-monooxygenase from *Pseudomonas putida*. The recombinant dimeric oxygenase component of this enzyme has been crystallised and its structure solved to 1.4 Å resolution.

Acknowledgements

I would like to thank several people for their help and support throughout my PhD years. Firstly, I would like to thank Jenny Littlechild for taking me on, and for all her support throughout my research. I am forever grateful to Misha Isupov who has had the painful task of teaching me crystallography. On the subject of crystallography, I would also like to thank Tsutomu Nakamura for the year he spent in the UK, and Chris Sayer. I would like to thank Kirsty Line for helping me through my purification work, constantly there answering my stupid questions. I would like to thank Paul Dalby and John Ward from UCL; John for supplying me with exceedingly good clones, and Paul for helping me with the kinetic inhibition work.

A big thanks to the people of the Biocatalysis Centre, for all your entertainment at lunch time especially Joe.

Finally, I would like to thank my family for their support; so a big thanks to my Mum, Dad and my little sister Luisa, and of course my girlfriend Claire.

Abbreviations

2,5-DKMO- 2,5-diketocamphane 1,2-monooxygenase

3,6-DKMO- 3,6-diketocamphane 1,2-monooxygenase

A280- Absorbance at 280 nm

Å- Angstrom

Au- Atomic units

APS- Ammonium persulfate

ATP- Adenosine Triphosphate

BAM- Benzamidine

bp- Base pairs

BSA- Bovine serum albumin

BVMO- Baeyer-Villiger monooxygenase

CCP4- Collaborative Computational Project, number 4

CHMO- cyclohexanone monooxygenase

D469Y- Glutamate mutation to tyrosine at position 469

DMSO- Dimethyl Sulfoxide

EC- Enzyme commission

EDTA- Ethylenediaminetetraacetic acid (disodium salt)

FAD- flavin adenine dinucleotide

FMN- flavin mononucleotide

FFQ- Fast flow Q

FPA- Fluoropyruvic acid

FPLC- Fast protein liquid chromatography

g- Acceleration due to gravity

GA- Glycolaldehyde

GAPDH- Glyceraldehyde 3-phosphate dehydrogenase

GF- Gel filtration

H26Y- Histidine mutation to tyrosine at position 26

HEPES- 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

his-tag- Poly histidine tag

HPA- Hydroxypyruvic acid

IPTG- Isopropyl β-D-galactopyranoside

kDa- Kilo Dalton

K_m- Michaelis Constant

LB- Luria-Bertani

MAD- Multiple anomalous diffraction

MES- 2-(N-morpholino)ethanesulfonic acid

MW- Molecular weight

MWCO - Molecular weight cut off

NADPH/ NAD⁺- Nicotinamide adenine dinucleotide (protonated/deprotonated)

NMR- Nuclear magnetic resonance

OD- Optical density

PAGE- Polyacrylamide gel electrophoresis

PDB- Protein Databank

PEG- Polyethylene glycol

PIPES- 1,4-Piperazinediethanesulfonic acid

PMSF- Phenylmethylsulphonyl fluoride

PPP- Pentose Phosphate Pathway

RMS- Root mean square

rpm- Revolutions per minute

SAD- Single anomalous diffraction

SDS- Sodium dodecyl sulfate

SRS- Synchrotron radiation source

TEMED- N,N,N,N-tetramethylethylene diamide

TFA- Trifluoroacetic acid

TK- Transketolase

TPP- Thiamine pyrophosphate

Tris- Tris(hydroxymethyl)aminomethane

UV- Ultra violet

v/v- Volume to volume

V- Volts

 $V_{\mbox{\scriptsize max}\mbox{-}}$ Measure of maximum turnover by an enzyme

w/v- Weight to volume

Table of Contents

Abstract	2
Acknowledgements	3
Abbreviations	4
Table of contents	7
List of tables	16
List of figures	17
Chapter 1 Introduction	21
1.1 Introduction into enzymes	21
1.1.1 Brief history of enzymes	21
1.1.2 Enzyme nomenclature and classification	22
1.1.3 Enzyme classes	22
1.1.4 Enzyme structure	23
1.1.5 Enzyme selectivity	24
1.1.6 Enzyme mechanism	24
1.1.7 Enzyme cofactors	25
1.1.8 Enzyme kinetics	26
1.1.8.1 Single-substrate biotransformations	26
1.1.8.2 Multi-substrate biotransformations	28
1.1.9 Enzyme inhibition	29
1.2 Introduction to biocatalysis and biotransformation	30
1.2.1 Industrial biocatalysis	31
1.3 Formation of C-C bonds	35
1.3.1 Chemical C-C bond formation	36
1.3.2 Biological C-C bond formation	38
1.4 Transketolase	40
1.4.1 Cellular functions	42
1.4.2 Substrate specificity	44
1.4.3 Structure	46
1.4.4 Cofactors	49
1.4.5 Stability and optimum pH	50
1.4.5 Catalytic mechanism	51

1.4.6 Inhibition	54
1.4.7 Use as a biocatalyst	58
1.4.7.1 Industrial applications	60
1.5 Project aims	61
Chapter 2 General materials and methods	62
2.1 Purification	62
2.1.1 Reagent grade materials	62
2.1.2 Buffers	62
2.1.3 Protein concentration estimation	63
2.1.3.1 Spectrophotometric method (Warburg and Christian method)	63
2.1.3.2 Bio-Rad standard assay procedure (Dye binding method)	63
2.1.4 SDS-Polyacrylamide gel electrophoresis (SDS-PAGE)	64
2.1.4.1 Stock solutions for SDS PAGE	64
2.1.4.2 SDS-PAGE gel preparation	64
2.1.4.3 Molecular weight protein standards	65
2.1.4.4 Sample preparation	65
2.1.4.5 Gel electrophoresis	65
2.1.4.6 Gel staining and destaining	65
2.1.5 Dialysis tubing	66
2.1.6 Concentration of protein solutions	66
2.1.7 pH measurement	66
2.1.8 Conditions for the growth of microorganisms	67
2.1.9 Growth of microorganisms	67
2.1.10 Protein purification	68
2.1.10.1 Sonication of cells	68
2.1.10.2 Ammonium sulfate fractionation	68
2.1.10.3 Ion-exchange chromatography	69
2.1.10.4 Gel-filtration chromatography	69
2.1.10.5 Handling and storage of protein solutions	70
2.2 Characterisation	70
2.2.1 Colorimetric activity assay	70
2.2.2 Dynamic light scattering analysis	71
2.3 Crystallisation	71
2.3.1. Sample preparation	71

2.3.2 Crystallisation methods	71
2.3.2.1 Sitting drop vapour diffusion method	72
2.3.2.2 Microbatch method	72
2.3.3 Crystallisation of TK	73
2.3.3.1 Crystallisation trials	73
2.3.3.1.1 Microbatch trial of TK	73
2.3.3.1.2 Vapour diffusion trials of TK	74
2.3.3.1.3 Optimisation of vapour diffusion crystallisation of TK	74
2.3.4 Co-crystallisation of TK with hydroxypyruvate (HPA)	74
2.3.5 Co-crystallisation of TK with fluoropyruvate (FPA)	74
2.3.6 Crystallisation of H26Y	75
2.3.7 Crystallisation of D469Y	75

76

α	1	n / •	• •	
I hantor	- ⊀	Protoin	niiriti	ration
Chunter		1 1 010111	DUILLI	cuuon
r	_		r ····J·	

3.1 Introduction	76
3.2 Purification of recombinant E. coli transketolase	76
3.2.1 Materials and methods	76
3.2.1.1 Preparation of lysed cell extract	76
3.2.1.2 Ammonium sulfate fractionation	77
3.2.1.3 Ion-exchange chromatography	77
3.2.1.4 Gel filtration chromatography	77
3.2.2 Purification results for recombinant E. coli transketolase	77
3.2.2.1 Ammonium sulfate fractionation	77
3.2.2.2 Ion-exchange chromatography	78
3.2.2.3 Gel-filtration chromatography	78
3.2.3.1 SDS PAGE analysis of purification	81
3.2.4 Discussion	82
3.3 Purification of recombinant E. coli transketolase mutant H26Y	82
3.3.1 Materials and methods	82
3.3.2 Purification results for recombinant E. coli transketolase	
mutant H26Y	83
3.3.2.1 Ammonium sulfate fractionation	83
3.3.2.2 Ion-exchange chromatography	83
3.3.2.3 Gel-filtration chromatography	83

3.3.3.1 SDS PAGE analysis of purification	85
3.3.4 Discussion	85
3.4 Purification of recombinant E. coli transketolase mutant D469Y	86
3.4.1 Materials and methods	86
3.4.1 Purification results for recombinant E. coli transketolase	
mutant D469Y	86
3.4.1.1 Ammonium sulfate fractionation	86
3.4.1.2 Ion-exchange chromatography	86
3.4.1.3 Gel-filtration chromatography	87
3.4.3.1 SDS PAGE analysis of purification	89
3.4.4 Discussion	89
3.5 Purification protocol	90
Chapter 4 Characterisation	91
4.1 Introduction	91
4.2 Materials and methods	93
4.2.1 Dynamic light scattering analysis	93
4.2.2 Colorimetric activity assay	93
4.2.3 Transketolase HPLC assay	93
4.2.4 Inhibition studies using fluoropyruvic acid (FPA)	93
4.2.4.1 Time/inhibition studies of TK with FPA	94
4.2.4.2 Time/inhibition studies of the mutant H26Y with FPA	94
4.2.4.3 Time/inhibition studies of the mutant D469Y with FPA	94
4.2.4.4 Kinetic studies of TK with FPA	94
4.3 Results and discussion	96
4.3.1 Dynamic light scattering analysis	96
4.3.2.1 Colorimetric activity of the E. coli transketolase,	
and the mutants H26Y and D469Y	97
4.3.4 Inhibition studies using fluoropyruvic acid (FPA)	98
4.3.4.1 Time/inhibition studies of TK with FPA	98
4.3.4.2 Time/inhibition studies of the mutant H26Y with FPA	100
4.3.4.3 Time/inhibition studies of the mutant D469Y with FPA	101
4.3.5 Kinetic studies of TK with FPA	102
4.3.5.1 Constant GA, varying HPA, no FPA	103
4.3.5.2 Constant GA, varying HPA, with FPA	104

4.3.5.3 Constant HPA, varying GA, no FPA	107
4.3.5.4 Constant HPA, varying GA, with FPA	109
4.3.5.5 Summary and discussion	111
Chapter 5 Crystallisation	113
5.1 Introduction	113
5.2 Methods of crystallisation	117
5.2.1 Sitting drop vapour diffusion method	117
5.2.2 Microbatch method	118
5.3 Crystallisation of <i>E. coli</i> transketolase	120
5.3.1 Microbatch method crystallisation of E. coli transketolase	120
5.3.1.1 Materials and methods	120
5.3.1.1.1 Sample preparation	120
5.3.1.1.2 Crystallisation trials	120
5.3.1.2 Results	120
5.3.2 Vapour diffusion method for crystallisation of	
E. coli transketolase	123
5.3.2.1 Materials and methods	123
5.3.2.1.1 Sample preparation	123
5.3.2.1.2 Crystallisation trials	124
5.3.2.3 Results	124
5.3.3 Co-crystallisation of E. coli transketolase with	
hydroxypyruvate and fluoropyruvate	127
5.3.3.1 Materials and methods	127
5.3.3.1.1 Sample preparation	127
5.3.3.1.2 Crystallisation trials	127
5.3.3.2 Results	127
5.3.4 Crystallisation of E. coli transketolase mutants	
H26Y and D469Y	130
5.3.4.1 Materials and methods	130
5.3.4.1.1 Sample preparation	130
5.3.4.1.2 Crystallisation trials	130
5.3.4.2 Results	130
5.4 Discussion	132

Chapter 6 X-ray diffraction studies on E. coli transketolase	133
6.1 Introduction	133
6.1.1 History of the x-ray source and early protein crystallography	133
6.1.2 Crystal symmetry	135
6.1.3 X-ray scattering by crystals	136
6.1.4 Protein structure determination	138
6.1.4.1 Isomorphous replacement	138
6.1.4.2 Anomalous diffraction	138
6.1.4.3 Molecular replacement	139
6.1.4.4 Protein structure refinement	142
6.2 Materials and methods	143
6.2.1 Mother liquor and cryogenic liquor	143
6.2.2 Crystal soaks	143
6.2.3 'In-house' data collection	144
6.2.4 High Resolution Data	144
6.2.5 Data processing	144
6.3 Results and discussion	145
6.3.1 <i>E. coli</i> transketolase	145
6.3.1.1 'In house' data	145
6.3.1.2 High resolution data	145
6.3.2 E. coli transketolase mutant H26Y	147
6.3.2.1 'In house' data	147
6.4 Structure solution and refinement	148
6.4.1 Phase determination	149
6.4.2 Model building and refinement	149
6.4.3 Model building of the inhibitor and substrate	149
6.4.4 Structure validation	150
6.5 Results and discussion	150
6.5.1 <i>E. coli</i> transketolase	150
6.5.2 E. coli transketolase mutant H26Y	152
Chapter 7 Structure of the E. coli transketolase	154
7.1 Monomer structure	154

7.2 Oligomeric structure	163
7.3 Active site	166
7.3.1 Residues and cofactors involved in catalytic activity	169
7.3.2 Catalytic reaction pathway	172
7.3.3 Water channel 'The Proton Wire'	174
Chapter 8 Structures of the E. coli transketolase in complex	
with substrate analogues	175
8.1 Building of the hydroxypyruvate and fluoropyruvate	
complexes	175
8.2 Binding of the hydroxypyruvate molecule within the	
active site	177
8.3 Binding of the fluoropyruvate molecule within the active site	181
8.4 Comparisons in the binding of the hydroxypyruvate and	
fluoropyruvate molecules within the active site	184
8.5 Comparisons in the binding of the hydroxypyruvate and	
fluoropyruvate intermediates with other TK complexes	187
8.6 Implication of the binding in the hydroxypyruvate and	
fluoropyruvate intermediates on the transketolase mechanism	191
Chapter 9 Structure of transketolase mutant H26Y complexed	
with substrate analogue	193

8	
9 1 Introduction	193
9.2 Building of the H26Y variant structure with the bound	
fluoropyruvate	194
9.3 The H26Y mutant of E. coli transketolase	195
9.4 Effect of the H26Y mutant transketolase on the	
fluoropyruvate michaelis complex	198
9.5 Production of alternative enantiomer from the H26Y	
mutant transketolase	200

Chapter 10 Purification, characterisation and X-ray diffraction

studies on Pseudomonas putida 2,5-diketocamphane

1,2-monooxygenase	202
10.1 Introduction	202
10.1.1 The Baeyer-Villiger oxidation	202
10.1.2 The Baeyer-Villiger monooxygenases (BVMO)	203
10.1.3 Baeyer–Villiger monooxygenases involved in camphor	
degradation pathway	206
10.1.4 The 2,5-diketocamphane 1,2-monooxygenase	206
10.1.5 The 3,6-diketocamphane 1,6-monooxygenase	206
10.1.6 Project aims	207
10.2 Purification and characterisation of the recombinant	
2,5-diketocamphane monooxygenase	208
10.2.1 Materials and methods	208
10.2.1.1 Buffers	208
10.2.1.2 Preparation of lysed cell extract	208
10.2.1.3 Protamine sulfate precipitation	208
10.2.1.4 Hydrophobic chromatography	209
10.2.1.5 Ion-exchange chromatography	209
10.2.1.6 Gel filtration chromatography	209
10.2.1.7 Dynamic light scattering analysis	209
10.2.2 Purification and characterisation results for	
Recombinant 2,5-diketocamphane monooxygenase	210
10.2.2.1 Hydrophobic chromatography	210
10.2.2.3 Ion-exchange chromatography	210
10.2.2.4 Gel-filtration chromatography	210
10.2.2.5 Dynamic light scattering analysis	210
10.2.3 Discussion	215
10.2.4 Purification summary of 2,5-diketocamphane	
monooxygenase	216
10.3 Crystallisation of recombinant 2,5-diketocamphane	
monooxygenase	217
10.3.1 Materials and methods	217
10.3.1.1 Sample preparation	217

10.3.1.2 Crystallisation trials	217
10.3.1.3 Crystallisation results for recombinant	
2,5-Diketocamphane monooxygenase	217
10.4 X-ray Diffraction studies of recombinant	
2,5-Diketocamphane monooxygenase	220
Chapter 11 Summary and further work	222
11.1 Summary	222
11.2 Further work	224
Appendix I – Purification and characterisation	226
Appendix II – Crystallisation	228
Appendix III – X-ray diffraction	238
Appendix IV– Derivation of Michaelis-Menten equation	243
References	245

List of Tables

1.1 K _m values for selected substrates for TK	45
1.2 K_m values for non-phosphorylated substrates of TK	45
4.1 Conversion of the HPA by TK, H26Y and D469Y	97
4.2 Data for the constant GA, varying HPA, no FPA	103
4.3 Data for the constant GA, varying HPA, FPA	105
4.4 Data for the constant HPA, varying GA, no FPA	107
4.5 Data for the constant HPA, varying GA, FPA	109
4.6 Summary of data for constant HPA	111
4.7 Summary of data for constant GA	111
5.1 Factors effecting crystallisation	116
5.2 Summary of the results obtained from microbatch for TK	123
5.3 Summary of the results obtained from sitting drop for TK	125
6.1 The seven crystal system	136
6.2 Data processing statistics for the TK, TK-HPA and TK-FPA data sets	146
6.3 Data processing statistics for the H26Y-FPA data set	148
6.4 Refinement statistics for the three TK structure models	152
6.5 Refinement statistics for the H26Y-FPA structure model	153
7.1 Conserved active site residues of the five known TK structure	170
10.1 Positive results for crystallisation trials for 2,5-DKMO	218
10.2 Data processing statistics for the 2,5-DKMO	220

List of Figures

1.1 Kinetic single step mechanism for single substrate reaction	26
1.2 Saturation curve for a single substrate reaction	27
1.3 Lineweaver-Burk double reciprocal plot	28
1.4 Random order of ternary complex mechanism	29
1.5 The ping-pong mechanism	29
1.6 Bar chart of the increase in industrial process in the last 40 years	33
1.7 Pie chart of the distribution of enzyme types in industry	34
1.8 The chemical C-C bond formation reactions	37
1.9 The biocatalytic C-C bond formation reactions	39
1.10 Transketolase reaction in industry	40
1.11 Transketolase reaction in nature	41
1.12 The non-oxidative stage of the PPP	42
1.13 Secondary structure of yeast transketolase monomer	47
1.14 Secondary structure of yeast transketolase dimer	48
1.15 Representation of the thiamine pyrophosphate molecule	49
1.16 Proposed transketolase mechanism	53
1.17 Diagram of the oxythiamine	55
1.18 Diagram of the dehydroepiandrosterone	55
1.19 Diagram of the N-acetylimidazole	57
1.20 Diagram of the omeprazole	57
1.21 Diagram of the <i>p</i> -hydroxyphenylpyruvate	57
1.22 The conversion of 3-O-benzylglyceraldehyde to5-O-benzyl-D-xylulose	59
1.23 The coupling of hydroxypyruvate to ribose 5-phosphate	59
2.1 Restriction enzyme map of transketolase-expressing plasmid	67
2.2 The set-up of a vapour diffusion crystallisation experiment	72
2.3 The set-up of a microbatch crystallisation experiment	73
3.1 Chromatography trace of the FFQ column for TK	79
3.2 Chromatography trace of Superdex 200 column for TK	80
3.3 Tetrazolium colorimetric assays standards	80
3.4 Tetrazolium red colorimetric assays of TK purification	80
3.5 SDS PAGE gel of TK purification	81
3.6 Chromatography trace of the FFQ column for H26Y	84

3.7 Chromatography trace of Superdex 200 column for H26Y	84
3.8 SDS PAGE gel of H26Y purification	85
3.9 Chromatography trace of the FFQ column for D469Y	87
3.10 Chromatography of Superdex 200 column for D469Y	88
3.11 SDS PAGE gel of D469Y purification	89
4.1 Dynamic light scattering for TK	96
4.2 Tetrazolium red colormetric assay of TK, H26Y and D469Y	97
4.3 Standard HPLC trace for TK reaction	99
4.4 Production of L-erythrulose with incubation of FPA by TK	99
4.5 Production of D-erythrulose with incubation of FPA by H26Y	100
4.6 Production of D-erythrulose with incubation of FPA by D469Y	101
4.7 Concentration/Time graph of TK, (constant GA, varying HPA, no FPA)	103
4.8 Lineweaver-Burk plot (constant GA, varying HPA, no FPA)	104
4.9 Concentration/Time graph of TK, (constant GA, varying HPA, FPA)	105
4.10 Lineweaver-Burk plot (constant GA, varying HPA, FPA)	106
4.11 Concentration/Time graph of TK, (constant HPA, varying GA, no FPA)	107
4.12 Lineweaver-Burk plot (constant HPA, varying GA, no FPA)	108
4.13 Concentration/Time graph of TK, (constant HPA, varying GA, with FPA)	109
4.14 Lineweaver-Burk plot (constant HPA, varying GA, with FPA)	110
5.1 A phase diagram of protein solubility	114
5.2 Set-up of a sitting drop vapour diffusion experiment	118
5.3 Set-up of a microbatch experiment	119
5.4 TK crystal obtained from microbatch using high MW PEG	121
5.5 TK crystal obtained from microbatch using HEPES and $(NH_4)_2SO_4$	122
5.6 TK crystal obtained from using microbatch MES and $(NH_4)_2SO_4$	122
5.7 TK crystals in buffer D using sitting drop in 50% $(NH_4)_2SO_4$	124
5.8 TK crystals in buffer E using sitting drop in 50% $(NH_4)_2SO_4$	125
5.9 TK crystals in buffer E using sitting drop in 48% (NH ₄) ₂ SO ₄	126
5.10 TK crystals in 48% $(NH_4)_2SO_4$ with 40 mM FPA	128
5.11 TK crystals in 48% $(NH_4)_2SO_4$ with 40 mM HPA	129
5.12 H26Y crystals in buffer E using sitting drop in 50% $(NH_4)_2SO_4$	131
5.13 D469Y crystals in buffer E using sitting drop in 55% $(NH_4)_2SO_4$	131
6.1 The Unit Cell	135
6.2 Conditions of Bragg's law	137
6.3 The main principles of molecular replacement method	139

6.4 The rotation function	140
6.5 The translation function	142
6.6 High resolution frame of data for TK	147
7.1 Stereo diagram of the C α trace	155
7.2 Topology diagram of TK	156
7.3 Assignment of secondary structure of the monomer	157
7.4 Secondary structure TK monomer	158
7.5 Sequence alignment of the five transketolases	161
7.6 Superimposition of TK monomer with other TK monomers	162
7.7 Secondary structure TK dimer	164
7.8 Hydrogen bonding on interface of TK dimer	165
7.9 The active site showing secondary structure and keys residue	167
7.10 The active site surface area	168
7.11 $2F_{o}$ - F_{c} electron density map of the TPP	168
7.12 Formation of the 'active' thiazolium ylide	170
7.13 Catalytic residues of TK active site	171
7.14 Catalytic mechanism of TK	173
8.1 The fluoropyruvate molecule	176
8.2 $2F_o$ - F_c electron density map of TPP-HPA for TK	176
8.3 $2F_{o}$ - F_{c} electron density map of TPP-FPA for TK	177
8.4 TPP-HPA intermediate within the active site	179
8.5 Stereo diagram of the hydrogen-bonding network of TPP-HPA	180
8.6 Bonding angles formed between the TPP and HPA	180
8.7 Stereo diagram of the TPP-FPA complex in the active site	181
8.8 Diagram of the hydrogen-bonding network of TPP-FPA	182
8.9 Bonding angles formed between the TPP and HPA	183
8.10 Comparison of hydrogen bonding of TPP-FPA and TPP-HPA	185
8.11 Superimposition of TPP-FPA and TPP-HPA complexes	186
8.12 Superimposition of TPP-HPA and yeast 1GPU structures	187
8.13 Superimposition of TPP-HPA and X5P-TPP 2R8O structures	188
8.14 Comparison of TPP-HPA and X5P-TPP hydrogen bonding network	189
8.15 Comparison of TPP-FPA and X5P-TPP hydrogen bonding network	190
8.16 Superimposition of TPP-FPA and X5P-TPP 2R8O structures	190
9.1 F_o - F_c electron density map for the H26Y mutation	196
9.2 Superimposition of the active site residues of the H26Y and TK	197

9.3 $2F_{o}$ - F_{c} electron density map of TPP-FPA for TK	198
9.4 Diagram of the hydrogen-bonding network of TPP-FPA for H26Y	199
9.5 Superimposition of TPP-FPA complexes in TK and H26Y models	199
9.6 TK biotransformation of GA and HPA using TK and the H26Y	200
9.7 Model TPP-HPA intermediate within the H26Y active site	201
10.1 Mechanism of the Baeyer-Villiger oxidation	202
10.2 The overall catalytic reaction of the BVMOs	204
10.3 The catalytic steps of the overall reaction of BVMOs	205
10.4 Chromatography trace of Phenyl sepharose column for 2,5-DKMO	211
10.5 SDS PAGE gel for the Phenyl sepharose purification of 2,5-DKMO	211
10.6 Chromatography trace of FFQ column for 2,5-DKMO	212
10.7 SDS PAGE gel for the FFQ purification of 2,5-DKMO	212
10.8 Chromatography trace of GF column for 2,5-DKMO	213
10.9 SDS PAGE gel for the GF purification of 2,5-DKMO	213
10.10 Dynamic light scattering for the 2,5-DKMO	214
10.11 2,5-DKMO crystal grown from PEG 8000	219
10.12 2,5-DKMO crystal grown from PEG monomethylether 5000	219
10.13 Sequence alignment of the 2,5-DKMO and 3,6 DKMO	221