87 research outputs found
MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 1: Frequency, syndrome specificity, influence of disease activity, long-term course, association with AQP4-IgG, and origin
BACKGROUND: Antibodies to myelin oligodendrocyte glycoprotein (MOG-IgG) have been suggested to play a role in a subset of patients with neuromyelitis optica and related disorders. OBJECTIVE: To assess (i) the frequency of MOG-IgG in a large and predominantly Caucasian cohort of patients with optic neuritis (ON) and/or myelitis; (ii) the frequency of MOG-IgG among AQP4-IgG-positive patients and vice versa; (iii) the origin and frequency of MOG-IgG in the cerebrospinal fluid (CSF); (iv) the presence of MOG-IgG at disease onset; and (v) the influence of disease activity and treatment status on MOG-IgG titers. METHODS: 614 serum samples from patients with ON and/or myelitis and from controls, including 92 follow-up samples from 55 subjects, and 18 CSF samples were tested for MOG-IgG using a live cell-based assay (CBA) employing full-length human MOG-transfected HEK293A cells. RESULTS: MOG-IgG was detected in 95 sera from 50 patients with ON and/or myelitis, including 22/54 (40.7 %) patients with a history of both ON and myelitis, 22/103 (21.4 %) with a history of ON but no myelitis and 6/45 (13.3 %) with a history of longitudinally extensive transverse myelitis but no ON, and in 1 control patient with encephalitis and a connective tissue disorder, all of whom were negative for AQP4-IgG. MOG-IgG was absent in 221 further controls, including 83 patients with AQP4-IgG-seropositive neuromyelitis optica spectrum disorders and 85 with multiple sclerosis (MS). MOG-IgG was found in 12/18 (67 %) CSF samples from MOG-IgG-seropositive patients; the MOG-IgG-specific antibody index was negative in all cases, indicating a predominantly peripheral origin of CSF MOG-IgG. Serum and CSF MOG-IgG belonged to the complement-activating IgG1 subclass. MOG-IgG was present already at disease onset. The antibodies remained detectable in 40/45 (89 %) follow-up samples obtained over a median period of 16.5 months (range 0-123). Serum titers were higher during attacks than during remission (p < 0.0001), highest during attacks of simultaneous myelitis and ON, lowest during acute isolated ON, and declined following treatment. CONCLUSIONS: To date, this is the largest cohort studied for IgG to human full-length MOG by means of an up-to-date CBA. MOG-IgG is present in a substantial subset of patients with ON and/or myelitis, but not in classical MS. Co-existence of MOG-IgG and AQP4-IgG is highly uncommon. CSF MOG-IgG is of extrathecal origin. Serum MOG-IgG is present already at disease onset and remains detectable in the long-term course. Serum titers depend on disease activity and treatment status
Treatment of MOG-IgG-associated disorder with rituximab: An international study of 121 patients
OBJECTIVE: To assess the effect of anti-CD20 B-cell depletion with rituximab (RTX) on relapse rates in myelin oligodendrocyte glycoprotein antibody-associated disorder (MOGAD). METHODS: Retrospective review of RTX-treated MOGAD patients from 29 centres in 13 countries. The primary outcome measure was change in relapse rate after starting rituximab (Poisson regression model). RESULTS: Data on 121 patients were analysed, including 30 (24.8%) children. Twenty/121 (16.5%) were treated after one attack, of whom 14/20 (70.0%) remained relapse-free after median (IQR) 11.2 (6.3-14.1) months. The remainder (101/121, 83.5%) were treated after two or more attacks, of whom 53/101 (52.5%) remained relapse-free after median 12.1 (6.3-24.9) months. In this 'relapsing group', relapse rate declined by 37% (95%CI=19-52%, p<0.001) overall, 63% (95%CI=35-79%, p = 0.001) when RTX was used first line (n = 47), and 26% (95%CI=2-44%, p = 0.038) when used after other steroid-sparing immunotherapies (n = 54). Predicted 1-year and 2-year relapse-free survival was 79% and 55% for first-line RTX therapy, and 38% and 18% for second-/third-line therapy. Circulating CD19+B-cells were suppressed to <1% of total circulating lymphocyte population at the time of 45/57 (78.9%) relapses. CONCLUSION: RTX reduced relapse rates in MOGAD. However, many patients continued to relapse despite apparent B-cell depletion. Prospective controlled studies are needed to validate these results
Evaluation of a Multiparametric Immunofluorescence Assay for Standardization of Neuromyelitis Optica Serology
Background: Neuromyelitis optica (NMO) is a severely disabling autoimmune disorder of the central nervous system, which predominantly affects the optic nerves and spinal cord. In a majority of cases, NMO is associated with antibodies to aquaporin-4 (AQP4) (termed NMO-IgG). Aims: In this study, we evaluated a new multiparametric indirect immunofluorescence (IIF) assay for NMO serology. Methods: Sera from 20 patients with NMO, 41 patients with multiple sclerosis (MS), 30 healthy subjects, and a commercial anti-AQP4 IgG antibody were tested in a commercial composite immunofluorescence assay ("Neurology Mosaic 17"; Euroimmun, Germany), consisting of five different diagnostic substrates (HEK cells transfected with AQP4, non-transfected HEK cells, primate cerebellum, cerebrum, and optic nerve tissue sections). Results: We identified AQP4 specific and non-specific fluorescence staining patterns and established positivity criteria. Based on these criteria, this kit yielded a high sensitivity (95%) and specificity (100%) for NMO and had a significant positive and negative likelihood ratio (LR+ = ∞, LR- = 0.05). Moreover, a 100% inter- and intra-laboratory reproducibility was found. Conclusions: The biochip mosaic assay tested in this study is a powerful tool for NMO serology, fast to perform, highly sensitive and specific for NMO, reproducible, and suitable for inter-laboratory standardization as required for multi-centre clinical trials
Observation of azimuth-dependent suppression of hadron pairs in electron scattering off nuclei
We present the first measurement of di-hadron angular correlations in
electron-nucleus scattering. The data were taken with the CLAS detector and a
5.0 GeV electron beam incident on deuterium, carbon, iron, and lead targets.
Relative to deuterium, the nuclear yields of charged-pion pairs show a strong
suppression for azimuthally opposite pairs, no suppression for azimuthally
nearby pairs, and an enhancement of pairs with large invariant mass. These
effects grow with increased nuclear size. The data are qualitatively described
by the GiBUU model, which suggests that hadrons form near the nuclear surface
and undergo multiple-scattering in nuclei. These results show that angular
correlation studies can open a new way to elucidate how hadrons form and
interact inside nucleiComment: 6 pages, 4 figure
Observation of Azimuth-Dependent Suppression of Hadron Pairs in Electron Scattering Off Nuclei
We present the first measurement of dihadron angular correlations in electron-nucleus scattering. The data were taken with the CLAS detector and a 5.0 GeV electron beam incident on deuterium, carbon, iron, and lead targets. Relative to deuterium, the nuclear yields of charged-pion pairs show a strong suppression for azimuthally opposite pairs, no suppression for azimuthally nearby pairs, and an enhancement of pairs with large invariant mass. These effects grow with increased nuclear size. The data are qualitatively described by the gibuu model, which suggests that hadrons form near the nuclear surface and undergo multiple scattering in nuclei. These results show that angular correlation studies can open a new way to elucidate how hadrons form and interact inside nuclei
First Measurement of Hard Exclusive π- Δ++ Electroproduction Beam-Spin Asymmetries off the Proton
The polarized cross-section ratio σLT′/σ0 from hard exclusive π-Δ++ electroproduction off an unpolarized hydrogen target has been extracted based on beam-spin asymmetry measurements using a 10.2 GeV/10.6 GeV incident electron beam and the CLAS12 spectrometer at Jefferson Lab. The study, which provides the first observation of this channel in the deep-inelastic regime, focuses on very forward-pion kinematics in the valence regime, and photon virtualities ranging from 1.5 GeV2 up to 7 GeV2. The reaction provides a novel access to the d-quark content of the nucleon and to p→Δ++ transition generalized parton distributions. A comparison to existing results for hard exclusive π+n and π0p electroproduction is provided, which shows a clear impact of the excitation mechanism, encoded in transition generalized parton distributions, on the asymmetry
The Ariel payload electrical and electronic architecture: a summary of the current design and implementation status
Ariel is the M4 mission of the ESA’s Cosmic Vision Program 2015-2025, whose aim is to characterize by lowresolution transit spectroscopy the atmospheres of over one thousand warm and hot exoplanets orbiting nearby stars. It has been selected by ESA in March 2018 and adopted in November 2020 to be flown, then, in 2029. It is the first survey mission dedicated to measuring the chemical composition and thermal structures of the atmospheres of hundreds of transiting exoplanets, in order to enable planetary science far beyond the boundaries of the Solar System. The Payload (P/L) is based on a cold section (PLM – Payload Module) working at cryogenic temperatures and a warm section, located within the Spacecraft (S/C) Service Vehicle Module (SVM) and hosting five warm units operated at ambient temperature (253-313 K). The P/L and its electrical, electronic and data handling architecture has been designed and optimized to perform transit spectroscopy from space during primary and secondary planetary eclipses in order to achieve a large set of unbiased observations to shed light and fully understand the nature of exoplanets atmospheres, retrieving information about planets interior and determining the key factors affecting the formation and evolution of planetary systems
The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase
The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory. Athena is a versatile observatory designed to address the Hot and Energetic Universe science theme, as selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), X-IFU aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over a hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (including the X-IFU cryostat and the cooling chain), due to an unanticipated cost overrun of Athena. In this paper, after illustrating the breakthrough capabilities of the X-IFU, we describe the instrument as presented at its SRR (i.e. in the course of its preliminary definition phase, so-called B1), browsing through all the subsystems and associated requirements. We then show the instrument budgets, with a particular emphasis on the anticipated budgets of some of its key performance parameters, such as the instrument efficiency, spectral resolution, energy scale knowledge, count rate capability, non X-ray background and target of opportunity efficiency. Finally, we briefly discuss the ongoing key technology demonstration activities, the calibration and the activities foreseen in the X-IFU Instrument Science Center, touch on communication and outreach activities, the consortium organisation and the life cycle assessment of X-IFU aiming at minimising the environmental footprint, associated with the development of the instrument. Thanks to the studies conducted so far on X-IFU, it is expected that along the design-to-cost exercise requested by ESA, the X-IFU will maintain flagship capabilities in spatially resolved high resolution X-ray spectroscopy, enabling most of the original X-IFU related scientific objectives of the Athena mission to be retained. The X-IFU will be provided by an international consortium led by France, The Netherlands and Italy, with ESA member state contributions from Belgium, Czech Republic, Finland, Germany, Poland, Spain, Switzerland, with additional contributions from the United States and Japan.The French contribution to X-IFU is funded by CNES, CNRS and CEA. This work has been also supported by ASI (Italian Space Agency) through the Contract 2019-27-HH.0, and by the ESA (European Space Agency) Core Technology Program (CTP) Contract No. 4000114932/15/NL/BW and the AREMBES - ESA CTP No.4000116655/16/NL/BW. This publication is part of grant RTI2018-096686-B-C21 funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”. This publication is part of grant RTI2018-096686-B-C21 and PID2020-115325GB-C31 funded by MCIN/AEI/10.13039/501100011033
The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase
The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray
spectrometer, studied since 2015 for flying in the mid-30s on the Athena space
X-ray Observatory, a versatile observatory designed to address the Hot and
Energetic Universe science theme, selected in November 2013 by the Survey
Science Committee. Based on a large format array of Transition Edge Sensors
(TES), it aims to provide spatially resolved X-ray spectroscopy, with a
spectral resolution of 2.5 eV (up to 7 keV) over an hexagonal field of view of
5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement
Review (SRR) in June 2022, at about the same time when ESA called for an
overall X-IFU redesign (including the X-IFU cryostat and the cooling chain),
due to an unanticipated cost overrun of Athena. In this paper, after
illustrating the breakthrough capabilities of the X-IFU, we describe the
instrument as presented at its SRR, browsing through all the subsystems and
associated requirements. We then show the instrument budgets, with a particular
emphasis on the anticipated budgets of some of its key performance parameters.
Finally we briefly discuss on the ongoing key technology demonstration
activities, the calibration and the activities foreseen in the X-IFU Instrument
Science Center, and touch on communication and outreach activities, the
consortium organisation, and finally on the life cycle assessment of X-IFU
aiming at minimising the environmental footprint, associated with the
development of the instrument. Thanks to the studies conducted so far on X-IFU,
it is expected that along the design-to-cost exercise requested by ESA, the
X-IFU will maintain flagship capabilities in spatially resolved high resolution
X-ray spectroscopy, enabling most of the original X-IFU related scientific
objectives of the Athena mission to be retained. (abridged).Comment: 48 pages, 29 figures, Accepted for publication in Experimental
Astronomy with minor editin
- …