39 research outputs found

    Semantic representation of neural circuit knowledge in Caenorhabditis elegans.

    Get PDF
    In modern biology, new knowledge is generated quickly, making it challenging for researchers to efficiently acquire and synthesise new information from the large volume of primary publications. To address this problem, computational approaches that generate machine-readable representations of scientific findings in the form of knowledge graphs have been developed. These representations can integrate different types of experimental data from multiple papers and biological knowledge bases in a unifying data model, providing a complementary method to manual review for interacting with published knowledge. The Gene Ontology Consortium (GOC) has created a semantic modelling framework that extends individual functional gene annotations to structured descriptions of causal networks representing biological processes (Gene Ontology-Causal Activity Modelling, or GO-CAM). In this study, we explored whether the GO-CAM framework could represent knowledge of the causal relationships between environmental inputs, neural circuits and behavior in the model nematode C. elegans [C. elegans Neural-Circuit Causal Activity Modelling (CeN-CAM)]. We found that, given extensions to several relevant ontologies, a wide variety of author statements from the literature about the neural circuit basis of egg-laying and carbon dioxide (C

    Automatic categorization of diverse experimental information in the bioscience literature

    Get PDF
    Background: Curation of information from bioscience literature into biological knowledge databases is a crucial way of capturing experimental information in a computable form. During the biocuration process, a critical first step is to identify from all published literature the papers that contain results for a specific data type the curator is interested in annotating. This step normally requires curators to manually examine many papers to ascertain which few contain information of interest and thus, is usually time consuming. We developed an automatic method for identifying papers containing these curation data types among a large pool of published scientific papers based on the machine learning method Support Vector Machine (SVM). This classification system is completely automatic and can be readily applied to diverse experimental data types. It has been in use in production for automatic categorization of 10 different experimental datatypes in the biocuration process at WormBase for the past two years and it is in the process of being adopted in the biocuration process at FlyBase and the Saccharomyces Genome Database (SGD). We anticipate that this method can be readily adopted by various databases in the biocuration community and thereby greatly reducing time spent on an otherwise laborious and demanding task. We also developed a simple, readily automated procedure to utilize training papers of similar data types from different bodies of literature such as C. elegans and D. melanogaster to identify papers with any of these data types for a single database. This approach has great significance because for some data types, especially those of low occurrence, a single corpus often does not have enough training papers to achieve satisfactory performance. Results: We successfully tested the method on ten data types from WormBase, fifteen data types from FlyBase and three data types from Mouse Genomics Informatics (MGI). It is being used in the curation work flow at WormBase for automatic association of newly published papers with ten data types including RNAi, antibody, phenotype, gene regulation, mutant allele sequence, gene expression, gene product interaction, overexpression phenotype, gene interaction, and gene structure correction. Conclusions: Our methods are applicable to a variety of data types with training set containing several hundreds to a few thousand documents. It is completely automatic and, thus can be readily incorporated to different workflow at different literature-based databases. We believe that the work presented here can contribute greatly to the tremendous task of automating the important yet labor-intensive biocuration effort

    WormBase 2012: more genomes, more data, new website

    Get PDF
    Since its release in 2000, WormBase (http://www.wormbase.org) has grown from a small resource focusing on a single species and serving a dedicated research community, to one now spanning 15 species essential to the broader biomedical and agricultural research fields. To enhance the rate of curation, we have automated the identification of key data in the scientific literature and use similar methodology for data extraction. To ease access to the data, we are collaborating with journals to link entities in research publications to their report pages at WormBase. To facilitate discovery, we have added new views of the data, integrated large-scale datasets and expanded descriptions of models for human disease. Finally, we have introduced a dramatic overhaul of the WormBase website for public beta testing. Designed to balance complexity and usability, the new site is species-agnostic, highly customizable, and interactive. Casual users and developers alike will be able to leverage the public RESTful application programming interface (API) to generate custom data mining solutions and extensions to the site. We report on the growth of our database and on our work in keeping pace with the growing demand for data, efforts to anticipate the requirements of users and new collaborations with the larger science community

    “Who am I to bring diversity into the classroom?” Learning communities wrestle with creating inclusive college classrooms

    Get PDF
    This study explored the experiences of gateway course instructors during the implementation of pedagogical changes aimed at improving the success of diverse students. A detailed case study was built through analysis of peer observations, focus groups, oral and written reflections, student grades, in-depth interviews, and pre and post student surveys. Results showed that instructors faced three major challenges in implementing pedagogical changes: pragmatic challenges, student-centered challenges, and challenges to instructor self-concept. Embracing a learning paradigm and participating in a learning community helped instructors to manage these challenges and create more inclusive learning environments for students

    WormBase: a multi-species resource for nematode biology and genomics

    Get PDF
    WormBase (http://www.wormbase.org/) is the central data repository for information about Caenorhabditis elegans and related nematodes. As a model organism database, WormBase extends beyond the genomic sequence, integrating experimental results with extensively annotated views of the genome. The WormBase Consortium continues to expand the biological scope and utility of WormBase with the inclusion of large-scale genomic analyses, through active data and literature curation, through new analysis and visualization tools, and through refinement of the user interface. Over the past year, the nearly complete genomic sequence and comparative analyses of the closely related species Caenorhabditis briggsae have been integrated into WormBase, including gene predictions, ortholog assignments and a new synteny viewer to display the relationships between the two species. Extensive site-wide refinement of the user interface now provides quick access to the most frequently accessed resources and a consistent browsing experience across the site. Unified single-page views now provide complete summaries of commonly accessed entries like genes. These advances continue to increase the utility of WormBase for C.elegans researchers, as well as for those researchers exploring problems in functional and comparative genomics in the context of a powerful genetic system

    WormBase: a comprehensive resource for nematode research

    Get PDF
    WormBase (http://www.wormbase.org) is a central data repository for nematode biology. Initially created as a service to the Caenorhabditis elegans research field, WormBase has evolved into a powerful research tool in its own right. In the past 2 years, we expanded WormBase to include the complete genomic sequence, gene predictions and orthology assignments from a range of related nematodes. This comparative data enrich the C. elegans data with improved gene predictions and a better understanding of gene function. In turn, they bring the wealth of experimental knowledge of C. elegans to other systems of medical and agricultural importance. Here, we describe new species and data types now available at WormBase. In addition, we detail enhancements to our curatorial pipeline and website infrastructure to accommodate new genomes and an extensive user base

    WormBase: a comprehensive data resource for Caenorhabditis biology and genomics

    Get PDF
    WormBase (http://www.wormbase.org), the model organism database for information about Caenorhabditis elegans and related nematodes, continues to expand in breadth and depth. Over the past year, WormBase has added multiple large-scale datasets including SAGE, interactome, 3D protein structure datasets and NCBI KOGs. To accommodate this growth, the International WormBase Consortium has improved the user interface by adding new features to aid in navigation, visualization of large-scale datasets, advanced searching and data mining. Internally, we have restructured the database models to rationalize the representation of genes and to prepare the system to accept the genome sequences of three additional Caenorhabditis species over the coming year

    WormBase: better software, richer content

    Get PDF
    WormBase (), the public database for genomics and biology of Caenorhabditis elegans, has been restructured for stronger performance and expanded for richer biological content. Performance was improved by accelerating the loading of central data pages such as the omnibus Gene page, by rationalizing internal data structures and software for greater portability, and by making the Genome Browser highly customizable in how it views and exports genomic subsequences. Arbitrarily complex, user-specified queries are now possible through Textpresso (for all available literature) and through WormMart (for most genomic data). Biological content was enriched by reconciling all available cDNA and expressed sequence tag data with gene predictions, clarifying single nucleotide polymorphism and RNAi sites, and summarizing known functions for most genes studied in this organism

    WormBase: new content and better access

    Get PDF
    WormBase (), a model organism database for Caenorhabditis elegans and other related nematodes, continues to evolve and expand. Over the past year WormBase has added new data on C.elegans, including data on classical genetics, cell biology and functional genomics; expanded the annotation of closely related nematodes with a new genome browser for Caenorhabditis remanei; and deployed new hardware for stronger performance. Several existing datasets including phenotype descriptions and RNAi experiments have seen a large increase in new content. New datasets such as the C.remanei draft assembly and annotations, the Vancouver Fosmid library and TEC-RED 5′ end sites are now available as well. Access to and searching WormBase has become more dependable and flexible via multiple mirror sites and indexing through Google

    Alliance of Genome Resources Portal: unified model organism research platform

    Get PDF
    The Alliance of Genome Resources (Alliance) is a consortium of the major model organism databases and the Gene Ontology that is guided by the vision of facilitating exploration of related genes in human and well-studied model organisms by providing a highly integrated and comprehensive platform that enables researchers to leverage the extensive body of genetic and genomic studies in these organisms. Initiated in 2016, the Alliance is building a central portal (www.alliancegenome.org) for access to data for the primary model organisms along with gene ontology data and human data. All data types represented in the Alliance portal (e.g. genomic data and phenotype descriptions) have common data models and workflows for curation. All data are open and freely available via a variety of mechanisms. Long-term plans for the Alliance project include a focus on coverage of additional model organisms including those without dedicated curation communities, and the inclusion of new data types with a particular focus on providing data and tools for the non-model-organism researcher that support enhanced discovery about human health and disease. Here we review current progress and present immediate plans for this new bioinformatics resource
    corecore