16 research outputs found

    Self-assembling peptide hydrogels promote in vitro chondrogenesis of bone marrow-derived stromal cells : effects of peptide sequence, cell donor age, and method of growth factor delivery

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Biological Engineering, 2009.Cataloged from PDF version of thesis.Includes bibliographical references (p. 108-115).The inability of articular cartilage to heal after damage or disease has motivated investigation of novel cartilage tissue engineering technologies. The objective of this thesis was to advance the use of self-assembling peptide hydrogel scaffolds for cartilage repair by encapsulating bone-marrow-stromal cells (BMSCs) and incorporating chondrogenic cues to stimulate differentiation and neotissue production. To test the hypothesis that self-assembling peptide hydrogels provide cues which enhance the chondrogenic differentiation of BMSCs, a technique for rapid, high-viability BMSC encapsulation was developed. BMSCs were cultured in two peptide hydrogel sequences and compared to agarose hydrogels. BMSCs in all three hydrogels underwent TGF-3 1-mediated chondrogenesis as demonstrated by comparable gene expression and ECM biosynthesis. Cell proliferation occurred only in the peptide hydrogels, not in agarose, resulting in higher sulfated-glycosaminoglycan content and more spatially uniform proteoglycan and type II collagen deposition. These data showed that self-assembling peptide hydrogels enhance chondrogenesis compared to agarose. To evaluate the capacity for BMSCs from young and adult equine donors to produce cartilage-like ECM, neotissue formation was compared to that for animal-matched primary chondrocytes. Young chondrocytes stimulated by TGF-PlI accumulated ECM with higher sulfated-glycosaminoglycan content than adult chondrocytes and BMSCs of either age. BMSCs produced neotissue with higher dynamic stiffness than young chondrocytes. Measurement of aggrecan core-protein and chondroitin-sulfate length by atomic-force microscopy revealed BMSCs produce longer core protein and chondroitin-sulfate, and fewer catabolic-cleavage products than chondrocytes. Therefore, BMSC-produced aggrecan appears to have a younger phenotype than chondrocyte-produced aggrecan. These advantages make BMSCs a potentially superior cell source for peptide-hydrogel-based cartilage repair. To deliver TGF-pl to BMSCs via a bioactive scaffold, BMSCs were encapsulated in peptide hydrogels with both tethered and adsorbed TGF-p1 and cultured in TGF-p 1-free medium. Chondrogenesis was compared to that of unmodified peptide hydrogels with medium-delivered TGF-p1. Adsorbed-TGF-plI peptide hydrogels stimulated chondrogenesis of BMSCs as demonstrated by cell proliferation and cartilage-like ECM accumulation, while tethered TGF-p1 was not different from TGF-pl -free controls. TGF-p1 adsorbed to self-assembling peptide hydrogels can stimulate BMSC chondrogenesis. BMSC-seeded self-assembling peptide hydrogels, modified for controlled delivery of pro-chondrogenic factors, generate cartilage-like neotissue and are compatible with a single-surgery, autologous therapy for cartilage repair.by Paul Wayne Kopesky.Ph.D

    Sustained delivery of bioactive TGF-β1 from self-assembling peptide hydrogels induces chondrogenesis of encapsulated bone marrow stromal cells

    Get PDF
    Tissue engineering strategies for cartilage defect repair require technology for local targeted delivery of chondrogenic and anti-inflammatory factors. The objective of this study was to determine the release kinetics of transforming growth factor β1 (TGF-β1) from self-assembling peptide hydrogels, a candidate scaffold for cell transplant therapies, and stimulate chondrogenesis of encapsulated young equine bone marrow stromal cells (BMSCs). Although both peptide and agarose hydrogels retained TGF-β1, fivefold higher retention was found in peptide. Excess unlabeled TGF-β1 minimally displaced retained radiolabeled TGF-β1, demonstrating biologically relevant loading capacity for peptide hydrogels. The initial release from acellular peptide hydrogels was nearly threefold lower than agarose hydrogels, at 18% of loaded TGF-β1 through 3 days as compared to 48% for agarose. At day 21, cumulative release of TGF-β1 was 32–44% from acellular peptide hydrogels, but was 62% from peptide hydrogels with encapsulated BMSCs, likely due to cell-mediated TGF-β1 degradation and release of small labeled species. TGF-β1 loaded peptide hydrogels stimulated chondrogenesis of young equine BMSCs, a relevant preclinical model for treating injuries in young human cohorts. Self-assembling peptide hydrogels can be used to deliver chondrogenic factors to encapsulated cells making them a promising technology for in vivo, cell-based regenerative medicine.National Institutes of Health (U.S.) (NIH EB003805)National Institutes of Health (U.S.) (NIH AR60331)National Institutes of Health (U.S.). Molecular, Cell, and Tissue Biomechanics (Training Grant Fellowship)Arthritis Foundation (postdoctoral fellowship

    Structure-property evaluation of trisilanolphenyl POSS®/polysulfone composites as a guide to POSS melt blending

    No full text
    A series of polysulfone/phenyl trisilanol POSS nanocomposites were produced by melt blending by twin screw batch mixing. These materials were then injec- tion molded, and their thermal, mechanical, and morpho- logical properties were tested. The tensile properties of polysulfone were moderately compromised by the addition of phenyl TPOSS, because of the formation of large ( 1 l m) voided POSS aggregates. These domains however did cause the improvement of the impact resistance of the composites as described by the mechanism of crack pinning and bow- ing. Flexural properties remained essentially unchanged, which is attributed to the formation of an aggregate free- skin layer, which formed in the injection molded parts. Thermal behavior of the composites also remained largely unchanged due to the lack of POSS-polymer interactions on the molecular/chain segment scale. Initially, it was hypothesized that a high degree of POSS-polymer interac- tions would be present in these composited based on exami- nation of their chemical structures. This however, was not the case as phase separation was clearly present. This work highlights the need for a better understanding of the predic- tion of POSS-polymer interaction.Peer Reviewe

    Self-assembling peptide hydrogels modulate in vitro chondrogenesis of bovine bone marrow stromal cells

    No full text
    Our objective was to test the hypothesis that self-assembling peptide hydrogel scaffolds provide cues that enhance the chondrogenic differentiation of bone marrow stromal cells (BMSCs). BMSCs were encapsulated within two unique peptide hydrogel sequences, and chondrogenesis was compared with that in agarose hydrogels. BMSCs in all three hydrogels underwent transforming growth factor-β1-mediated [factor beta 1-mediated] chondrogenesis as demonstrated by comparable gene expression and biosynthesis of extracellular matrix molecules. Expression of an osteogenic marker was unchanged, and an adipogenic marker was suppressed by transforming growth factor-β1 [factor beta 1] in all hydrogels. Cell proliferation occurred only in the peptide hydrogels, not in agarose, resulting in higher glycosaminoglycan content and more spatially uniform proteoglycan and collagen type II deposition. The G1-positive aggrecan produced in peptide hydrogels was predominantly the full-length species, whereas that in agarose was predominantly the aggrecanase product G1-NITEGE. Unique cell morphologies were observed for BMSCs in each peptide hydrogel sequence, with extensive cell–cell contact present for both, whereas BMSCs in agarose remained rounded over 21 days in culture. Differences in cell morphology within the two peptide scaffolds may be related to sequence-specific cell adhesion. Taken together, this study demonstrates that self-assembling peptide hydrogels enhance chondrogenesis compared with agarose as shown by extracellular matrix production, DNA content, and aggrecan molecular structure.National Institutes of Health (U.S.) (NIH grant EB003805)National Institutes of Health (U.S.). Molecular, Cell, and Tissue Biomechanics Training Grant FellowshipArthritis Foundatio

    Autocrine signaling is a key regulatory element during osteoclastogenesis

    No full text
    Osteoclasts are responsible for bone destruction in degenerative, inflammatory and metastatic bone disorders. Although osteoclastogenesis has been well-characterized in mouse models, many questions remain regarding the regulation of osteoclast formation in human diseases. We examined the regulation of human precursors induced to differentiate and fuse into multinucleated osteoclasts by receptor activator of nuclear factor kappa-B ligand (RANKL). High-content single cell microscopy enabled the time-resolved quantification of both the population of monocytic precursors and the emerging osteoclasts. We observed that prior to induction of osteoclast fusion, RANKL stimulated precursor proliferation, acting in part through an autocrine mediator. Cytokines secreted during osteoclastogenesis were resolved using multiplexed quantification combined with a Partial Least Squares Regression model to identify the relative importance of specific cytokines for the osteoclastogenesis outcome. Interleukin 8 (IL-8) was identified as one of RANKL-induced cytokines and validated for its role in osteoclast formation using inhibitors of the IL-8 cognate receptors CXCR1 and CXCR2 or an IL-8 blocking antibody. These insights demonstrate that autocrine signaling induced by RANKL represents a key regulatory component of human osteoclastogenesis

    Controlled Delivery of Transforming Growth Factor β1 [beta 1] by Self-Assembling Peptide Hydrogels Induces Chondrogenesis of Bone Marrow Stromal Cells and Modulates Smad2/3 Signaling

    No full text
    Self-assembling peptide hydrogels were modified to deliver transforming growth factor b1 [beta 1](TGF-b1)[TGF beta 1] to encapsulated bone-marrow-derived stromal cells (BMSCs) for cartilage tissue engineering applications using two different approaches: (i) biotin-streptavidin tethering; (ii) adsorption to the peptide scaffold. Initial studies to determine the duration of TGF-b1 [TGF beta 1] medium supplementation necessary to stimulate chondrogenesis showed that 4 days of transient soluble TGF-b1 [TGF beta 1] to newborn bovine BMSCs resulted in 10-fold higher proteoglycan accumulation than TGF-b1-free [TGF beta 1 free]culture after 3 weeks. Subsequently, BMSC-seeded peptide hydrogels with either tethered TGF-b1 [TGF beta 1] (Teth-TGF) or adsorbed TGF-b1 [TGF beta 1] (Ads-TGF) were cultured in the TGF-b1-free [TGF beta 1 free] medium, and chondrogenesis was compared to that for BMSCs encapsulated in unmodified peptide hydrogels, both with and without soluble TGF-b1 [TGF beta 1] medium supplementation. Ads-TGF peptide hydrogels stimulated chondrogenesis of BMSCs as demonstrated by cell proliferation and cartilage-like extracellular matrix accumulation, whereas Teth- TGF did not stimulate chondrogenesis. In parallel experiments, TGF-b1 [TGF beta 1] adsorbed to agarose hydrogels stimulated comparable chondrogenesis. Full-length aggrecan was produced by BMSCs in response to Ads-TGF in both peptide and agarose hydrogels, whereas medium-delivered TGF-b1 [TGF beta 1] stimulated catabolic aggrecan cleavage product formation in agarose but not peptide scaffolds. Smad2/3 was transiently phosphorylated in response to Ads-TGF but not Teth-TGF, whereas medium-delivered TGF-b1 [TGF beta 1] produced sustained signaling, suggesting that dose and signal duration are potentially important for minimizing aggrecan cleavage product formation. Robustness of this technology for use in multiple species and ages was demonstrated by effective chondrogenic stimulation of adult equine BMSCs, an important translational model used before the initiation of human clinical studies.National Institutes of Health (U.S.) ( (NIH EB003805) (NIH AR33236) (NIH AR45779)National Institutes of Health (U.S.). Molecular, Cell, and Tissue Biomechanics Training Grant FellowshipArthritis Foundatio

    Adult equine bone-marrow stromal cells produce a cartilage-like ECM superior to animal-matched adult chondrocytes

    No full text
    Our objective was to evaluate the age-dependent mechanical phenotype of bone marrow stromal cell- (BMSC-) and chondrocyte-produced cartilage-like neo-tissue and to elucidate the matrix-associated mechanisms which generate this phenotype. Cells from both immature (2–4 month-old foals) and skeletally-mature (2–5 year-old adults) mixed-breed horses were isolated from animal-matched bone marrow and cartilage tissue, encapsulated in self-assembling-peptide hydrogels, and cultured with and without TGF-β1 supplementation. BMSCs and chondrocytes from both donor ages were encapsulated with high viability. BMSCs from both ages produced neo-tissue with higher mechanical stiffness than that produced by either young or adult chondrocytes. Young, but not adult, chondrocytes proliferated in response to TGF-β1 while BMSCs from both age groups proliferated with TGF-β1. Young chondrocytes stimulated by TGF-β1 accumulated ECM with 10-fold higher sulfated-glycosaminoglycan content than adult chondrocytes and 2–3-fold higher than BMSCs of either age. The opposite trend was observed for hydroxyproline content, with BMSCs accumulating 2–3-fold more than chondrocytes, independent of age. Size-exclusion chromatography of extracted proteoglycans showed that an aggrecan-like peak was the predominant sulfated proteoglycan for all cell types. Direct measurement of aggrecan core protein length and chondroitin sulfate chain length by single molecule atomic force microscopy imaging revealed that, independent of age, BMSCs produced longer core protein and longer chondroitin sulfate chains, and fewer short core protein molecules than chondrocytes, suggesting that the BMSC-produced aggrecan has a phenotype more characteristic of young tissue than chondrocyte-produced aggrecan. Aggrecan ultrastructure, ECM composition, and cellular proliferation combine to suggest a mechanism by which BMSCs produce a superior cartilage-like neo-tissue than either young or adult chondrocytes.National Institutes of Health (U.S.) (EB003805)National Institutes of Health (U.S.) (AR33236)National Science Foundation (U.S.) (NSF-NIRT 0403903)National Institutes of Health (U.S.). Molecular, Cell, and Tissue Biomechanics Training Grant FellowshipArthritis Foundatio
    corecore