1,886 research outputs found

    CaV channels and cancer: canonical functions indicate benefits of repurposed drugs as cancer therapeutics

    Get PDF
    The importance of ion channels in the hallmarks of many cancers is increasingly recognised. This article reviews current knowledge of the expression of members of the voltage-gated calcium channel family (Ca(V)) in cancer at the gene and protein level and discusses their potential functional roles. The ten members of the Ca(V) channel family are classified according to expression of their pore-forming α-subunit; moreover, co-expression of accessory α2δ, β and γ confers a spectrum of biophysical characteristics including voltage dependence of activation and inactivation, current amplitude and activation/inactivation kinetics. Ca(V) channels have traditionally been studied in excitable cells including neurones, smooth muscle, skeletal muscle and cardiac cells, and drugs targeting the channels are used in the treatment of hypertension and epilepsy. There is emerging evidence that several Ca(V) channels are differentially expressed in cancer cells compared to their normal counterparts. Interestingly, a number of Ca(V) channels also have non-canonical functions and are involved in transcriptional regulation of the expression of other proteins including potassium channels. Pharmacological studies show that Ca(V) canonical function contributes to the fundamental biology of proliferation, cell-cycle progression and apoptosis. This raises the intriguing possibility that calcium channel blockers, approved for the treatment of other conditions, could be repurposed to treat particular cancers. Further research will reveal the full extent of both the canonical and non-canonical functions of Ca(V) channels in cancer and whether calcium channel blockers are beneficial in cancer treatment

    Accuracy, Stability, and Corrective Behavior in a Visuomotor Tracking Task: A Preliminary Study

    Get PDF
    Visuomotor tracking tasks have been used to elucidate the underlying mechanisms that allow for the coordination of a movement to an environmental event. The main purpose of the present study was to examine the relationship between accuracy and stability of tracking performance and the amount of corrective movements that emerge for various coordination patterns in a unimanual visuomotor tracking task. Participants (N = 6) produced rhythmic elbow flexion–extension motions and were required to track an external sinusoidal signal at five different relative phases, 0°, 45°, 90°, 135°, and 180°. Differential accuracy and stability were found among the five tracking patterns with the 0° relative phase pattern being the most accurate and stable pattern. Corrective movements were correlated with changes in accuracy only for the 0° relative phase pattern, with more corrections emerging for less accurate performance. The amount of corrective movements decreased as the stability of tracking performance increased for the 0°, 45°, and 135° patterns. For the 90° and 180° tracking patterns, the amount of corrective movements was not correlated with pattern accuracy or pattern stability. The results demonstrate that corrective behaviors are an important motor process in maintaining the stability of stable perception-action coordination patterns, while offering little benefit for unstable perception-action patterns

    Physiological levels of lipoxin A4 inhibit ENaC and restore airway surface liquid height in cystic fibrosis bronchial epithelium.

    Get PDF
    In cystic fibrosis (CF), the airway surface liquid (ASL) is depleted. We previously demonstrated that lipoxin A4 (LXA4) can modulate ASL height (ASLh) through actions on Cl(-) transport. Here, we report novel effects of lipoxin on the epithelial Na(+) channel ENaC in this response. ASL dynamics and ion transport were studied using live-cell confocal microscopy and short-circuit current measurements in CF (CuFi-1) and non-CF (NuLi-1) cell cultures. Low physiological concentrations of LXA4 in the picomolar range produced an increase in ASLh which was dependent on inhibition of an amiloride-sensitive Na(+) current and stimulation of a bumetanide-sensitive Cl(-) current. These ion transport and ASLh responses to LXA4 were blocked by Boc-2 an inhibitor of the specific LXA4 receptor ALX/FPR2. LXA4 affected the subcellular localization of its receptor and enhanced the localization of ALX/FPR2 at the apical membrane of CF cells. Our results provide evidence for a novel effect of low physiological concentrations of LXA4 to inhibit airway epithelial Na(+) absorption that results in an ASL height increase in CF airway epithelia

    Data pertaining to aberrant intracellular calcium handling during androgen deprivation therapy in prostate cancer

    Get PDF
    The data generated here in relates to the research article “CaV1.3 enhanced store operated calcium promotes resistance to androgen deprivation in prostate cancer”. A model of prostate cancer (PCa) progression to castration resistance was employed, with untreated androgen sensitive LNCaP cell line alongside two androgen deprived (bicalutamide) sublines, either 10 days (LNCaP-ADT) or 2 years (LNCaP-ABL) treatment, in addition to androgen insensitive PC3. With this PCa model, qPCR was used to examined fold change in markers linked to androgen resistance, androgen receptor (AR) and neuron specific enolase (NSE), observing an increase under androgen deprivation. In addition, the gene expression of a range of calcium channels was measured, with only the L-type Voltage gated calcium channel, CACNA1D, demonstrating an increase during androgen deprivation. With CACNA1D knockdown the channel was found not to influence the gene expression of calcium channels, ORAI1 and STIM1. The calcium channel blocker (CCB), nifedipine, was employed to determine the impact of CaV1.3 on the observed store release and calcium entry measured via Fura-2AM ratiometric dye in our outlined PCa model. In both the presence and absence of androgen deprivation, nifedipine was found to have no impact on store release induced by thapsigargin (Tg) in 0mM Ca(2+) nor store operated calcium entry (SOCE) following the addition of 2mM Ca(2+). However, CACNA1D siRNA knockdown was able to reduce SOCE in PC3 cells. The effect of nifedipine on CaV1.3 in PCa biology was measured through cell proliferation assay, with no observed change in the presence of CCB. While siCACNA1D reduced PC3 cell proliferation. This data can be reused to inform new studies investigating altered calcium handling in androgen resistant prostate cancer. It provides insight into the mechanism of CaV1.3 and its functional properties in altered calcium in cancer, which can be of use to researchers investigating this channel in disease. Furthermore, it could be helpful in interpreting studies investigating CCB's as a therapeutic and in the development of future drugs targeting CaV1.3

    Distance Measurement Methods for Improved Insider Threat Detection

    Get PDF
    Insider threats are a considerable problem within cyber security and it is often difficult to detect these threats using signature detection. Increasing machine learning can provide a solution, but these methods often fail to take into account changes of behaviour of users. This work builds on a published method of detecting insider threats and applies Hidden Markov method on a CERT data set (CERT r4.2) and analyses a number of distance vector methods (Damerau–Levenshtein Distance, Cosine Distance, and Jaccard Distance) in order to detect changes of behaviour, which are shown to have success in determining different insider threats

    Late Quaternary Faulting History of the Carrizal and Related Faults, La Paz Region, Baja California Sur, Mexico

    Get PDF
    The southwest margin of the Gulf of California has an array of active normal faults despite this being an oblique-divergent plate boundary with spreading centers that localized deformation along the plate boundary 2–3 million years ago. The Carrizal and Centenario faults form the western border fault of the Gulf of California marginal fault system within and south of La Paz Bay, and ∼20–30 km west of the capital city of La Paz, Baja California Sur, Mexico. Geologic and geomorphic mapping, optically stimulated luminescence (OSL) geochronology, and paleoseismic investigations onshore, compressed high-intensity radar pulse (CHIRP) profiling offshore, and analysis of uplifted marine terraces in the footwall of the offshore Carrizal fault provide some of the first numerical and geometrical constraints on late Pleistocene–Holocene faulting along the Carrizal fault. The onshore Carrizal fault has ruptured with up to ∼1–2 m of vertical displacement per event, likely producing ∼M 6.3–6.9 earthquakes, and at least two to three surface rupturing earthquakes have occurred since 22 ka. Onshore paleoseismic excavations and uplifted marine terraces on the western side of La Paz Bay both suggest offset rates of 0.1–0.2 mm/yr, with a footwall uplift rate of 0.13 mm/yr since 128 ka, and an approximately constant rate since marine oxygen-isotope stage (MIS) 11 terraces (420 ka). A CHIRP survey identified underwater fault scarps with heights ranging from 21 to 86 m on the Carrizal fault in La Paz Bay and from 3 to 5 m along the Centenario fault. The offshore Carrizal fault lies 8–10 km east of the western edge of La Paz Bay, forming a right step from the onshore Carrizal fault. The offshore Carrizal fault is the oldest fault of the fault system, and the fault likely grew in the latest Miocene to Pliocene in a complex way to the south toward the onshore Centenario and Carrizal faults. When the Alarcon spreading center started its modern rates at 2.4 Ma, the Carrizal fault likely slowed to the 0.1–0.2 mm/yr rates of the late Quaternary determined in this study

    Generalizing Evidence from Randomized Trials using Inverse Probability of Sampling Weights

    Get PDF
    Results obtained in randomized trials may not easily generalize to target populations. Whereas in randomized trials the treatment assignment mechanism is known, the sampling mechanism by which individuals are selected to participate in the trial is typically not known and assuming random sampling from the target population is often dubious. We consider an inverse probability of sampling weighted (IPSW) estimator for generalizing trial results to a target population. The IPSW estimator is shown to be consistent and asymptotically normal. A consistent sandwich-type variance estimator is derived and simulation results are presented comparing the IPSW estimator to a previously proposed stratified estimator. The methods are then utilized to generalize results from two randomized trials of HIV treatment to all people living with HIV in the US

    Evaluation of the Ability of LL-37 to Neutralise LPS In Vitro and Ex Vivo

    Get PDF
    BACKGROUND: Human cathelicidin LL-37 is a cationic antimicrobial peptide (AMP) which possesses a variety of activities including the ability to neutralise endotoxin. In this study, we investigated the role of LPS neutralisation in mediating LL-37's ability to inhibit Pseudomonas aeruginosa LPS signalling in human monocytic cells. METHODOLOGY/PRINCIPAL FINDINGS: Pre-treatment of monocytes with LL-37 significantly inhibited LPS-induced IL-8 production and the signalling pathway of associated transcription factors such as NF-κB. However, upon removal of LL-37 from the media prior to LPS stimulation, these inhibitory effects were abolished. These findings suggest that the ability of LL-37 to inhibit LPS signalling is largely dependent on extracellular LPS neutralisation. In addition, LL-37 potently inhibited cytokine production induced by LPS extracted from P. aeruginosa isolated from the lungs of cystic fibrosis (CF) patients. In the CF lung, polyanionic molecules such as glycosaminoglycans (GAGs) and DNA bind LL-37 and impact negatively on its antibacterial activity. In order to determine whether such interactions interfere with the LPS neutralising ability of LL-37, the status of LL-37 and its ability to bind LPS in CF sputum were investigated. Overall our findings suggest that in the CF lung, the ability of LL-37 to bind LPS and inhibit LPS-induced IL-8 production is attenuated as a result of binding to DNA and GAGs. However, LL-37 levels and its concomitant LPS-binding activity can be increased with a combination of DNase and GAG lyase (heparinase II) treatment. CONCLUSIONS/SIGNIFICANCE: Overall, these findings suggest that a deficiency in available LL-37 in the CF lung may contribute to greater LPS-induced inflammation during CF lung disease

    Methyl donor nutrients in chronic kidney disease: impact on the epigenetic landscape

    Get PDF
    Epigenetic alterations, such as those linked to DNA methylation, may potentially provide molecular explanations for complications associated with altered gene expression in illnesses, such as chronic kidney disease (CKD). Although both DNA hypo- and hypermethylation have been observed in the uremic milieu, this remains only a single aspect of the epigenetic landscape and, thus, of any biochemical dysregulation associated with CKD. Nevertheless, the role of uremia-promoting alterations on the epigenetic landscape regulating gene expression is still a novel and scarcely studied field. Although few studies have actually reported alterations of DNA methylation via methyl donor nutrient intake, emerging evidence indicates that nutritional modification of the microbiome can affect one-carbon metabolism and the capacity to methylate the genome in CKD. In this review, we discuss the nutritional modifications that may affect one-carbon metabolism and the possible impact of methyl donor nutrients on the microbiome, CKD, and its phenotype
    corecore