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Abstract 87 
 88 

Epigenetic alterations, such as those linked to DNA methylation, may potentially 89 

provide molecular explanations for complications associated with altered gene 90 

expression in illnesses, such as chronic kidney disease (CKD). While both DNA hypo- 91 

and hypermethylation have been observed in the uremic milieu, this remains only a 92 

single aspect of the epigenetic landscape and, thus, of any biochemical dysregulation 93 

associated with CKD. Nevertheless, the role of uremia-promoting alterations on the 94 

epigenetic landscape regulating gene expression is still a novel and scarcely studied 95 

field. Though few studies have actually reported alterations of DNA methylation via 96 

methyl donor nutrients intake, emerging evidence indicates that nutritional modification 97 

of the microbiome can affect one carbon metabolism and the capacity to methylate the 98 

genome in CKD. In this review, we discuss about the nutritional modifications that may 99 

affect one carbon metabolism and, the possible impact of methyl donor nutrients on the 100 

microbiome, CKD and its phenotype. 101 

 102 

Keywords: methyl donor nutrients, DNA methylation, chronic kidney disease  103 
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1. Introduction 104 

Chronic kidney disease (CKD) with a global prevalence of 10-15% represents a 105 

public health problem worldwide (1). CKD patients present with many complications, 106 

including persistent low-grade inflammation and oxidative stress, which are important 107 

contributors to adverse outcomes, such as cardiovascular disease (CVD) (2). Inter-108 

individual variation in disease progression and response to therapy remains substantial 109 

and the underlying factors contributing to this variation remain largely unknown. One 110 

potential source of this variation resides in  epigenetic differences and in particular, the 111 

epigenetic landscape of ageing (3, 4), as CKD manifests as a disease of accelerated 112 

ageing (5). The epigenetic landscape of ageing refers to the interplay, over the life 113 

course, between the environment and canonical features of the genomic methylome and 114 

chromatin structure, along with non-canonical features, such as the co-ordinated 115 

regulation of a broad range of cellular biochemistry by non-coding RNAs (3,4,5). 116 

Epigenetic regulation of the process of ageing is influenced directly by various 117 

factors, including nutrition, inflammation, the gut microbiome, psychosocial and 118 

lifestyle factors (3). Understanding how the epigenetic landscape changes in CKD 119 

would offer novel approaches to better understanding the uremic phenotype. For 120 

example, tailor-made interventions to target the underlying biochemistry of canonical 121 

epigenetic features via the nutritional acquisition of methyl donors required for 122 

maintenance of the methylome. 123 

 124 

1.1 What is epigenetics and how is it regulated? 125 

Epigenetics refers to heritable changes that are not coded for in the underlying 126 

DNA sequence. They enable a means of changing phenotype without changing the 127 

genotype. Epigenetic regulation of gene expression allows for rapid physiological 128 
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adaptations to environmental change, critical for development and homeostasis. In their 129 

canonical form, epigenetic modifications involve DNA methylation or histone 130 

modification (via methylation, acetylation, phosphorylation, ubiquitylation, and 131 

sumolyation) (3, 6). Such epigenetic changes regulate and coordinate access for 132 

transcriptional machinery to adjust gene expression, thus enabling changes in phenotype 133 

without changes in genotype. Additionally, at a non-canonical level, reciprocal 134 

regulatory networks of non-coding RNAs integrate canonical features within the greater 135 

epigenetic landscape (4, 6).  136 

The activation and repression of gene transcription by DNA methylation can be 137 

influenced by a range of factors including uremia and metabolic features, such as 138 

hyperhomocysteinemia, oxidative stress and inflammation (3-7). There is a paucity of 139 

information available on the methylome in CKD, which demands that knowledge of 140 

exactly how, when, where and which genes are activated or repressed as a consequence 141 

of methylation-induced changes. Additionally, how the ensuing physiological changes 142 

occur, must be viewed in the context of the overall epigenetic landscape of ageing. 143 

Unsurprisingly, both global hypo- (8) and hyper-methylation (9) have been reported in 144 

CKD. While accelerated ageing inherent in CKD should typically result in genomic 145 

hypomethylation and acceleration of a methylation based epigenetic clock, individual 146 

genes may show hypermethylation of their promoters or other regulatory elements, 147 

reflective of the human genome encodes diminution/loss of expression and thus 148 

decreased functional activity (2, 3). However, the biological context of any equivocal 149 

reports indicating an increase in global methylation remains unknown and requires 150 

evaluation (10). Epigenetic studies in CKD are, thus, important for better understanding 151 

the variable and complex uremic phenotype (11). 152 



 6 

Studies on epigenetic modifiers that can modulate features of the epigenetic landscape 153 

are scarce. Maintenance of the methylome is critical to the integrity of the epigenome. 154 

This is regulated via one carbon metabolism and, thus, in turn by nutritional input of 155 

methyl donors, such as Met, folate, vitamin B-12, choline and betaine which are 156 

substrate providers for many epigenetic processes (12, 13). Little is known about how 157 

nutrients affect epigenetic processes in CKD. Hence this review seeks to evaluate the 158 

evidence of epigenetic changes in CKD involving DNA methylation and, discuss the 159 

possible impact of methyl donor nutrients and their influence on the microbiome, as 160 

putative modifiers of CKD and its phenotype. 161 

 162 

 163 
 164 
1.2 The principles and the evidence for methylation dynamics in CKD 165 

DNA methylation, a dynamic and flexible means of modulating the response of 166 

the genome to environmental stimuli, is an inherent component of natural biological 167 

processes, such as ageing, that may reflect or possibly explain dysregulation in disease 168 

processes (13, 14). Typically, this comprises the transfer of a methyl group (CH3) from 169 

the universal methyl donor, S-adenosyl-L-methionine (SAM), to the 5-position of 170 

cytosine residues in DNA by DNA methyltransferases (DNMTs) enzymes, to form 5-171 

methylcytosine (15, 16). 172 

DNA methylation in mammals is highly regulated and DNMT activity can be 173 

modulated by numerous interactions with a diverse set of cofactors, post-translational 174 

modifications, alternative splicing and gene loss and duplication (15, 16, 17). DNA 175 

methylation patterns are considered the key markers of epigenetic programming and 176 

play an important role in maintaining genome integrity, disruption of which may result 177 

in chromosome instability. In human disease, altered DNA methylation patterns are one 178 

of the earliest and most consistent molecular changes observed (3, 18). 179 
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DNA methylation generally occurs within the context of CpG dinucleotides, 180 

where methylation permits methylation-binding proteins to bind to the site, repressing 181 

transcription via recruitment of chromatin remodeling factors. Most CpG sites within 182 

the mammalian genome are methylated, including CpGs found in and between genes 183 

(intronic and intergenic regions respectively) (18, 19). In contrast, regions which are 184 

enriched for CpG sites, termed “CpG islands,” are commonly depleted of methylated 185 

DNA, allowing an open chromatin structure and binding of transcription factors. CpG 186 

islands are highly conserved between mice and humans and approximately 70% of all 187 

gene promoters are found in CpG islands (4) (Figure 1). 188 

Regulation of DNMT activity can be influenced directly by nutrition via one 189 

carbon metabolism. Nutritionally acquired Met, for example, is a direct precursor for 190 

SAM, a universal methyl donor for several transmethylation pathways involving dietary 191 

nutrient-dependent enzymes (Figure 2). These include serine hydroxymethyl transferase 192 

(SMHT), with vitamin B-6 as a cofactor, methylenetetra-hydrofolate reductase 193 

(MTHFR) with vitamin riboflavin as a cofactor, Met synthase with vitamin B-12 as a 194 

cofactor, choline dehydrogenase (CHDH) with vitamin choline as cofactor and betaine 195 

homocysteine methyltransferase (BHMT) with betaine as a cofactor, After a methyl 196 

group is removed from SAM by one of the respective DNMTs, S-adenosyl-197 

homocysteine (SAH) is formed by the action of SAH hydrolase; this is hydrolyzed to 198 

homocysteine, which then enters into Met cycle (discussed below) (14, 18). In this way, 199 

SAH competes with the activity of DNMTs and acts as a powerful competitive inhibitor 200 

of SAM. Consequently, it plays an important role in maintenance of the cellular 201 

methylome (7, 19). 202 

In CKD, dynamic methylation at CpG islands is an inherent feature of epigenetic 203 

regulation, observed in vitro, in pre-clinical animal models and human studies (4, 20, 204 
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21, 22, 23). Notable examples of such regulation pertinent to renal biology, include 205 

hypermethylation of the RAS protein activator like 1 (Rasal1) gene (encoding an 206 

inhibitor of the Ras oncoprotein) causing kidney fibrosis in mice and suppression of 207 

Klotho activity (considered a regulator of ageing) through hypermethylation induced by 208 

microbial derived uremic toxins, such as indoxyl sulfate and p-cresyl sulfate (20). 209 

Notably, renal fibrosis has also been linked to the presence of senescent renal cells in 210 

CKD and links changes in the epigenetic landscape of ageing to pathological features of 211 

the disease (21). 212 

Epigenetic change in CKD is further exemplified by the MTHFR gene. Its 213 

enzymatic product is MTHFR, which promotes methyl radical synthesis in the 214 

homocysteine cycle, and can provide methyl groups for DNA methylation. MTHFR 215 

catalyzes the reduction of 5,10-methyl-tetrahydrofolate (THF) to 5-methyl-THF, in 216 

order to form Met from homocysteine, the concentration of which increases in CKD and 217 

is associated with increased CVD risk (22). CKD patients also display a significant up-218 

regulation in the methylation at the MTHFR promoter, commensurate with decreased 219 

production of this enzyme (22). In turn, this is expected to contribute to a loss of global 220 

genomic methylation correlating with increasing biological age (13, 16). 221 

In practice, however, extrapolating methylation changes at a given locus to a 222 

global picture of the epigenome in the uremic environment is challenging and complex. 223 

Differences in methodology and in techniques for assessment of DNA methylation 224 

changes have contributed to equivocal reports when applied to such analyses in CKD 225 

cohorts (7). Both Zinellu et al. (8) and Nanayakkara et al. (23) have demonstrated DNA 226 

hypomethylation in whole blood from CKD patients, while Hsu et al. (24), observed no 227 

such methylation loss, but did observe reduced DNMT3b transcription, supporting loss 228 

of regulation of the methylome with age and disease. In contrast, Stenvinkel et al. (9) 229 
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reported that inflamed CKD patients exhibited global DNA hypermethylation, which 230 

was associated with CVD and increased mortality. Recently, Ghigolea et al. (25), 231 

evaluating 80 haemodialysis (HD) patients, also reported global DNA hypermethylation 232 

in whole blood in dialysis patients compared to healthy individuals.   233 

Evaluation of renal function associated with methylome changes in the general 234 

population has also identified a strong association with genes involved in ageing 235 

processes. Bomotti et al. (26) investigated the methylation status of 14,000 genes and 236 

their relationship with eGFR in the GENOA Study. The top ranked candidates showing 237 

significant methylation changes correlating with variation in kidney function were 238 

involved in regulating the ageing process and inflammation. Notably, a high rank was 239 

observed for Krüppel-like transcription factor 2, which has a role in regulating blood 240 

flow through the glomerular kidney bed and regulation of most of the nuclear factor 241 

kappa B (NF-ΚB)-mediated activities, including inflammatory and fibrotic processes 242 

(27). This provides a rational basis for linking changes in epigenetic status with renal 243 

function in CKD. However, a more recent epigenome wide association study of kidney 244 

function and CKD in 4859 participants from the general population only identified 245 

DNA methylation changes at 19 CpGs that were associated with estimated glomerular 246 

filtration rate (eGFR) or CKD at epigenome-wide significance (28). This indicates the 247 

complexity in evaluating the directional nature of any methylation dynamics in CKD, 248 

relating to cause, effect and ageing. 249 

 250 

1.3 How might nutrition impact on the epigenome in CKD? 251 

As changes to the methylome are, context dependent, typically in response to 252 

dynamic environmental cues, it is worth discussing the impact of nutrition and how this 253 

may lead to observed differences in distinct clinical cohorts (3, 4, 5). A range of 254 
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nutritional factors feeding into one carbon metabolism will be discussed and evaluated 255 

for their capacity to influence changes in the epigenetic landscape. 256 

 257 

2. Methyl Donor Nutrients 258 

Methyl donor nutrients, such as Met, folate, vitamin B-12, choline and betaine 259 

are substrate providers for many epigenetic processes (29). For example, both maternal 260 

folate and choline supplementation during pregnancy can cause epigenetic alterations to 261 

genes in offspring (30). While most studies show positive health-effects associated with 262 

methyl donor supplementation, mounting evidence has also indicated the potential for 263 

deleterious effects, including an increased risk of cancer and neurological disorders (31, 264 

32). The impact of dietary methyl donors in CKD remains to be fully elucidated. It is, 265 

thus, pertinent to discuss the relative and respective merits of nutritionally derived 266 

methyl donors in the context of uremia. 267 

 268 

2.1 Methionine 269 

Met, an essential Sulphur-containing amino acid, is a central molecule in one-270 

carbon metabolism. Maintaining an adequate level of Met derived via nutritional intake, 271 

19 mg/kg/day of methionine + cysteine according to Institute of Medicine (IOM, 2005), 272 

is essential for ensuring an appropriate level to enable sufficient DNA methylation, 273 

facilitated by SAM production. Variation of the amount of Met in the diet can influence 274 

DNA methylation levels and consequently contribute to the dysregulation of gene 275 

expression (33).  276 

Red meat is predominantly abundant in Met content per total protein content, 277 

and high frequency of red meat consumption is associated with accelerated ageing and 278 

diminished renal function in man (34) and in animals (35). Met restriction can be 279 
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achieved through a vegan diet, however as Met is an essential amino acid it cannot be 280 

entirely removed from diet (36). Restriction of Met may extend longevity (37), improve 281 

glucose and lipid metabolism and reduce oxidative stress (38). This postulate is 282 

supported by a range of in vitro and in vivo pre-clinical models, indicating altered 283 

methylation profiles in a variety of human diseases (39, 40), that can be directly affected 284 

by altered Met levels in the diet (40).  285 

Met restriction is particularly pertinent to renal biology. Indeed, Cooke et al. (41) 286 

recently showed that kidneys in 5/6 nephrectomized mice play an important role in 287 

maintaining osmotic balance during Met restriction diet, by up-regulating genes 288 

involved with ion transport. Additionally, Met restriction may delay the progression of 289 

CKD by down-regulating inflammatory and fibrotic processes. This results in lower 290 

expression of  urinary biomarkers normally elevated during kidney disease (41). 291 

Correspondingly therefore, a high Met diet may induce elevated levels of oxidative 292 

stress and elevate renal damage in kidneys with tubular hypertrophy (42,43). 293 

Surprisingly therefore, , Amaral et al. (44) have reported that a high Met diet is not 294 

deleterious to kidney cells in Wistar rats. Furthermore, dietary Met supplementation did 295 

not alter the SAM/SAH ratio, nor DNA methylation at the promoter region of the tumor 296 

suppressor gene p53. However, it did result in restoration of glutathione levels in 297 

animals  treated with doxorubicin. 298 

 299 

2.2 Folate 300 

Folate is the term used to describe a range of forms of the water-soluble vitamin 301 

B-9 that occurs naturally in foods (Table 1) (41,45). Dietary folate has an important role 302 

in the formation of SAM, and can be a limiting factor in the associated pathway. In the 303 

folate cycle (Figure 1), folate is imported into cells and metabolized into its active form 304 
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THF, which is converted to 5,10-methyl-THF by hydroxymethyl transferase (vitamin B-305 

6 as cofactor). It is then reduced to 5-methyl-THF by MTHFR (riboflavin as cofactor), 306 

and to complete the folate cycle, 5-methyl-THF is demethylated to form THF. With the 307 

demethylation of 5-methyl-THF, the methyl group is donated into the Met cycle through 308 

the methylation of homocysteine by Met synthase and its cofactor vitamin B-12 (42, 43, 309 

46, 47). 310 

The ability of folate to lower homocysteine levels indirectly suggests it might 311 

have a positive influence on CVD, considering that high homocysteine plasma levels 312 

are linked to cardiovascular mortality in CKD (7). Accordingly, HD patients display 313 

low folic acid intake, low folate serum levels and high homocysteine levels (44, 48). 314 

Thus, folic acid therapy may be an important factor for these patients. Indeed, in a study 315 

targeting the high homocysteine levels in CKD, folate supplementation reduced but did 316 

not normalize plasma homocysteine levels (45, 49). However, other studies have 317 

reported no consistent effect of extended supplementation with folic acid on 318 

homocysteine levels in CVD and CKD cohorts (46, 47, 50, 51). An insight into these 319 

equivocal reports can be gained from Xiao et al. (19) who have discussed how elevated 320 

plasma homocysteine levels are associated with an increased risk of CVD, and why 321 

some intervention studies with vitamin B and folic acid supplementation are not able to 322 

reduce its levels. One possibility is that homocysteine is simply a marker of increased 323 

CVD risk and that SAH accumulation may be the cause of increased risk. Studies on 324 

atherosclerosis, CKD, diabetes and obesity have all shown that SAH levels better reflect 325 

an increased cardiovascular risk than homocysteine (48, 49, 52, 53). One proposed 326 

mechanism is that SAH promotes apoptosis of endothelial cells, independently 327 

of homocysteine levels, and enhances Dihydronicotinamide-adenine dinucleotide 328 

phosphate (NADPH) oxidase expression, increasing the production of reactive oxygen 329 
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species (50, 54). Furthermore, SAH is a powerful competitive inhibitor of SAM, which 330 

is also increased, both intra- and extracellularly, in various pre-clinical models of 331 

hyperhomocysteinaemia, including uremia (51,55). As a result, several methyl transfer 332 

reactions may be impaired, suggesting that methylation biochemistry is imbalanced (52, 333 

56). High levels of homocysteine and SAH can then be associated with altered DNA 334 

methylation profiles in CKD (7). It is worth mentioning, however, that while 335 

homocysteine levels are linked to DNA methylation profiles (53, 57), these may be 336 

specific to subsets of genetic elements and not to the DNA global methylation levels. 337 

Global DNA hypomethylation is more typically observed in most non-communicable 338 

and age related diseases. It is notable that confounding factors, such as inflammation, 339 

oxidative stress, dyslipidemia and folate supplementation, may explain the lack of 340 

agreement in reports from disparate clinical studies (52, 53, 56, 57). 341 

 342 

2.3 Vitamin B-12 343 

Vitamin B-12, a water-soluble vitamin, is one of eight B vitamins naturally present in 344 

animal and dairy products, and generally not present in plant foods. (Table 1) (54, 58). 345 

Vitamin B-12, together with folate, plays a key role in the formation of SAM in one-346 

carbon metabolism (Figure 1) and works as a coenzyme for Met synthesis via its action 347 

in the transfer of the methyl group from 5-methyl-THF to homocysteine to form Met 348 

(55, 59). Vitamin B-12 deficiency is associated with anemia and neurological disorders., 349 

Additionally, low vitamin B-12 is associated with higher plasma homocysteine, a risk 350 

factor for CVD (60). Impairment of its conversion to Met leads to DNA 351 

hypomethylation (56, 61). a key feature of normal ageing processes. 352 

Correspondingly, CKD patients also have high prevalence of vitamin B-12 353 

deficiency, in keeping with it being a disease of accelerated ageing (62). Furthemore, in 354 
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an observational cohort study, it has been shown that vitamin B-12 is not associated 355 

with albuminuria or reduced kidney function in both a univariate or multivariable-356 

adjusted models. However, in patients with elevated homocysteine levels, higher 357 

vitamin B-12 concentrations were associated with an increased prevalence of reduced 358 

kidney function. The combination of elevated homocysteine along with increased B-12 359 

suggests the possibility of a resistance to the usual effects of vitamin B-12 in these 360 

individuals (63). Moreover, Soohoo et al. (64) observed association between high 361 

vitamin B-12 levels and mortality in HD patients. In patients with higher predisposition 362 

to inflammation, such as the HD population, decreased production of transcobalamin II 363 

may lead to reduced uptake of circulating vitamin B-12 by peripheral tissues, and 364 

heightened synthesis of transcobalamins I and III further augment accumulation of B-12 365 

in serum (64).  366 

The ratio of folic acid and vitamin B-12 may play an important role in determining 367 

global DNA methylation levels. Indeed, it has been reported, that a vitamin B-12 368 

deficient diet, although with maternal folic acid supplementation, reduced total global 369 

DNA methylation levels in rats (57, 65). In human studies, children of mothers who had 370 

lower vitamin B-12 intake and high folate concentrations, presented insulin resistance 371 

and adiposity, suggesting that defects in one-carbon metabolism might be fundamental 372 

to intrauterine programming of adult disease (58, 66).  373 

 374 

2.4 Choline  375 

 Choline, a natural amine recognized as an essential nutrient, is widely distributed 376 

in foods, mostly in the form of phosphatidylcholine in the cell membranes (54, 58). 377 

Although choline can be synthesized in the liver, via the sequential methylation of 378 

phosphatidylethanolamine, the amount that the body naturally synthesizes is not 379 
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sufficient to meet human requirements (59, 67). Current evidence suggests that nearly 380 

90% of adults do not achieve the recommended daily adequate intake of choline (425 381 

and 550 mg/day for women and men, respectively) (61, 68). Choline deficiency leads to 382 

increased plasma homocysteine levels (thus there is a diminished capacity to methylate 383 

homocysteine to form Met), which is associated with CVD and cognitive decline 384 

(62,69) among other diseases, as well as genomic DNA hypomethylation through 385 

reduced tissue levels of SAM (63, 70).  386 

Under physiological conditions choline is excreted through urine. However, in 387 

CKD patients this methyl donor is accumulated. In dialysis patients, choline is cleared 388 

and plasma free choline concentration falls during hemodialysis, but returns to baseline 389 

levels 6 hrs later (71). Epidemiological studies have found that a high blood choline 390 

level is positively associated with metabolic syndrome (or dyslipidemia) (72) and 391 

major adverse cardiovascular events (73, 74). It is unclear whether choline itself, or 392 

metabolites like trimethylamine-N-oxide (TMAO), the production of which initially 393 

requires the metabolic activities of gut microbiota to generate it, contributes to the 394 

adverse events experienced by individuals with high choline intake (75). Indeed, 395 

several human studies have associated high levels of TMAO to CVD (76, 77, 78 ,79, 396 

80). Moreover, a direct inverse relationship between TMAO levels and renal function 397 

has been observed, with a severe elevation of TMAO seen in advanced CKD (77,81). 398 

Coinciding with this, TMAO has widely been identified as a promoter of atherosclerosis 399 

(70, 82), and accelerated atherosclerosis is exacerbated in patients suffering from CKD 400 

compared to those with normal renal function.  401 

 402 

2.5 Betaine 403 
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Betaine (glycine betaine, N,N,N-trimethylglycine) is an important non-essential 404 

nutrient derived from either dietary intake, or via choline oxidation. The latter involves 405 

choline oxidation to betaine aldehyde in the inner mitochondrial membrane, and then to 406 

betaine; both oxidation steps are catalyzed by CHDH. This reaction is essentially 407 

irreversible, as betaine cannot be reduced back to choline (71, 83). Betaine is found in a 408 

variety of food sources (Table 1) and its main physiological role is as a methyl donor, 409 

playing an essential role in the transition from homocysteine to Met, catalyzed by 410 

BHMT. Thus, betaine regulates the concentrations of SAH and is essential for one-411 

carbon metabolism (72, 73, 74, 84).  412 

Just like choline, betaine is a TMA-containing nutrient, that leads to the 413 

production of TMAO (74, 81). This uremic toxin is elevated in CKD, and is associated 414 

with high risks of progressive renal fibrosis, thereby significantly increasing mortality 415 

rates from the disease (75, 85).  416 

 417 

3. The microbiome - linking “inflammaging” to the epigenome 418 

A growing body of evidence has indicated that social, psychological life style 419 

and nutritional risk factors influence the trajectory of age related health and age related 420 

morbidities by acting either independently, cumulatively, or synergistically with an 421 

individual’s genetics, and in particular epigenetics, thus determining health span (3). 422 

Accelerated biological ageing (i.e. ‘miles on the clock’) is also a feature of age related 423 

morbidities, where disease specific processes are layered upon dysregulated ageing 424 

processes. This thesis has been extensively exemplified for the kidney, where CKD has 425 

been classified as a condition of accelerated ageing (5) + Stenvinkel P, Larsson T. Chronic 426 

kidney disease – a model of premature aging. Am J Kidney Dis. 2013 Aug;62(2):339-51. 427 
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Mechanistic insight into how dietary and epigenetic factors regulate ageing 428 

throughout the life-course, linked to a decline in renal function with ageing, is already 429 

proving of significant value (34). Recently, evidence has emerged indicating that (i) 430 

epigenetic regulation of nutrient sensing pathways and (ii) nutritional differences tied to 431 

socioeconomic position, can differentially affect the renal ageing process in particular 432 

age-related genomic hypomethylation and inflammatory status. In both instances, renal 433 

function reflected changes in ageing processes and their associated epigenetic regulation 434 

(3, 34). 435 

An outstanding problem, however, remains identifying factors driving 436 

“inflammaging”. Intuitively, the burden of aged (senescent) cells generates a pro-437 

inflammatory environment via a senescence associated secretory phenotype (SASP), 438 

that poison the surrounding tissue. However, in epidemiological cohorts, <15% of the 439 

level of systemic inflammation can be explained on the basis of cellular aging.  440 

A key component of the inflammatory burden of ageing may be provided by the 441 

microbiome. The human microbiome refers to the entire collection of genetic material 442 

belonging to the microorganisms residing within the human body, including bacteria, 443 

archaea, fungi, viruses, helminths and protozoa (76, 86). The microbiome is an integral 444 

part of the normal host function, and a mutual relationship exists between the human 445 

body and its associated microbiome (77, 87). A particular element of the microbiomes 446 

function, which is crucial to its host is its ability to provide a means of metabolising 447 

otherwise inaccessible nutrients needed for example, for the production of short chain 448 

fatty acids during energy metabolism (78, 88). The microbiome also produce 449 

metabolites, which are necessary for amino acid production essential to the host, and in 450 

turn is associated with maintaining our epigenetic landscape (3, 4). 451 
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As the gut microbiome changes with both chronological and biological age (79, 452 

89), one novel hypothesis that has gained much attraction is that the microbial 453 

metabolite TMAO is central to the inter-relationship between “inflammaging”, health 454 

span and the age-related epigenome. This pro-atherogenic and pro-inflammatory 455 

compound is derived from microbial metabolism of phosphatidylcholine, L-carnitine 456 

and lecithin, which are found in red meat, fish and eggs, so providing a mechanistic link 457 

between nutrition, ageing and the epigenome (3, 35). Production of TMA, the TMAO 458 

precursor, was also observed to be greater in frail older people that consumed a 459 

restricted diet than healthy older people, in a manner that could be linked to differences 460 

in their microbiome coding capacity (80, 90). There is also a further emerging role for 461 

the microbiome in epigenetics through production of butyrate that inhibits histone 462 

deacetylases (81, 91).  463 

     In CKD, microbial dysbiosis correlates with altered metabolism of proteins and 464 

amino acids leading to the production of toxic compounds including ammonia, phenols, 465 

indoles and most notably TMAO (2, 35). A study into the intestinal microbial 466 

populations of Chinese CKD patients found eight genes associated with TMAO 467 

production. One of these genes was associated with betaine metabolism and showed 468 

reduced expression in CKD. This suggests that gut dysbiosis leads to abnormal betaine 469 

metabolism, thus producing a redundant level of TMA free to be oxidised to toxic 470 

TMAO (91). Thus, monitoring the dietary intake of TMA producing nutrients, such as 471 

betaine, choline and L-carnitine, along with the identification of key members of the gut 472 

microbiota associated with their metabolism offer potential therapeutic strategies to 473 

alleviate the burden of renal disease.  474 

  In addition, the loss of symbiosis in the gut also contributes to impaired 475 

intestinal epithelial barrier function leading to translocation of bacterial-derived uremic 476 
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toxins into the systemic circulation (92). This contribute to inflammation, protein-477 

energy wasting, insulin resistance, and exacerbation of the risk of CVD during CKD 478 

progression (93). With these links between nutrition, microbial metabolism and 479 

epigenetic regulation in mind, studying the interplay between these key factors are 480 

important to further investigations into CKD progression, and could offer a potential 481 

therapeutic target.  482 

 483 

4. Conclusions 484 

Nutrient intake has a direct effect on the epigenome and emerging evidence is 485 

highlighting a complex interplay with the microbiome. This is both pertinent to age- 486 

related health and inflammation and involves modulation of one-carbon metabolism. 487 

This aspect of cellular biochemistry is of interest in CKD, as the exposure to a 488 

physiologically aberrant uremic milieu is a potential factor in the promotion of 489 

dysregulation of the epigenetic landscape. Additionally, any nutritional impact on the 490 

microbiome and its interaction with host physiology will again directly affect the 491 

epigenome. Alteration of the microbiome is a known feature of both CKD and 492 

“inflammaging”. It is intuitive to consider the modulation of the microbiome, either by 493 

variation in diet, or by restoration of microbial diversity in the gut using live bio-494 

therapeutics (i.e. implantation of hub microbes to alter diversity), to mitigate loss of 495 

diversity with ageing or in accelerated ageing linked to morbidities, such as CKD. 496 

Studies evaluating the effects of dietary supplementation, such as methyl donor 497 

nutrients, on the epigenome of CKD and gut microbiota metabolism, remain limited. 498 

Future studies are merited as a link is intuitive and may easily achieve direct clinical 499 

benefit. One further benefit from such approaches may be a reduction of age or disease 500 
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related inflammatory burden. This is again easily investigated, achievable and merits 501 

action. 502 
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Figure 1. Methylation playing a crucial role in gene expression 754 

DNA methyltransferases (DNMTs) catalyze the transfer of a methyl group (CH3) to the 755 

5-position of a cytosine, generating 5-methylcytosine. This chemical modification 756 

inhibits gene expression when areas rich in CpG (CpG Island) are present within 757 

promoter regions. 758 

 759 

Figure 2. Dietary nutrients and one-carbon metabolism 760 

One-carbon metabolism comprises the folate cycle and the methionine cycle that are 761 

interconnected in a complex process involving dietary nutrients as substrates or 762 

enzymatic cofactors. These nutrients and their respective dietary sources are depicted 763 

above. Dietary folate is metabolized into THF, which is converted to 5,10-methyl THF 764 

and finally to 5-methyl THF, which is demethylated and donates the methyl group into 765 

the methionine cycle through the methylation of homocysteine by a methionine 766 

synthase B-12-dependent reaction. Homocysteine can also receive a methyl group from 767 

betaine to form methionine. Methionine is then converted to SAM, the universal methyl 768 

donor required for DNA methylation. After the methyl group is transferred from SAM 769 

to the DNA molecule, forming 5-Methylcitosyne, SAH is formed and hydrolyzed to 770 

homocysteine, which returns to methionine cycle. 771 

BHMT: betaine homocysteine methyltransferase; DNMT: DNA methyltransferase; 772 

MTHFR: methylenetetrahydrofolate reductase; SAH: S-adenosylhomocysteine; SAM: 773 

S-adenosylmethionine; SHMT: serine hydroxymethyl transferase; THF: form 774 

tetrahydrofolate. 775 
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Table 1. Dietary methyl donors: sources, forms and functions 776 

 Source Food Forms Functions 

Methionine 

(g/100 g) 

Brazil nut 1.12 Chicken 0.79 

Beef and pork 0.77  

Cheese 0.52 

Eggs 0.40 

L- Methionine 

Central molecule in one-carbon metabolism 

Precursor to  S-adenosylmethionine  

Influences maximal lifespan in mammals 

Normal growth and development 

Folate 

(Vitamin B-9) 

(μg/100 g) 

Spinach 199 

Beans 149 

Broccoli 108 

Avocado 89 

Beets 80 

Eggs 51 

Folic acid 

Tetrahydrofolic acid, 

Methyltetrahydrofolate 

Methenyltetrahydrofolate Folinic 

acid  

 

Formation of  S-adenosylmethionine 

May lower homocysteine levels 

 

Vitamin B-12 

(μg/100 g)  

Fish 6.22 

Beef 1.68 

Eggs 0.89 

Yogurt 0.52 

Poultry 0.36 

Methyl cobalamin 

5-deoxyadenosylcobalamin  

Formation of  S-adenosylmethionine   

Red blood cell formation, neurological function 

and DNA synthesis 

 

Choline 

(mg/100 g) 

Egg yolk 689 

Liver 330  

Wheat germ 180 

Soybeans 120  

Meat 100  

Salmon 79  

Phosphatidylcholine, Lecithin  

Choline bitartrate 

Choline choride  

Phosphatidylcholine syntheses (vital 

phospholipid for cell membranes) 

Precursor for the neurotransmitter acetylcholine 

(central role in brain development) 

Oxidized, in the liver and kidney, or 

metabolized by gut bacteria to betaine (indirect 

methyl group donor for one-carbon 

metabolism) 

 

Betaine 

(mg/100 g)  

Quinoa 630 

Wheat germ 410 

Bran 320 

Spaghetti 140 

Beets 130 

Spinach 120 

Seafood 23 

Betaine HCl Essential for one-carbon metabolism 
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