971 research outputs found

    Bench-to-bedside review: Mechanisms of critical illness – classifying microcirculatory flow abnormalities in distributive shock

    Get PDF
    Over 30 years ago Weil and Shubin proposed a re-classification of shock states and identified hypovolemic, cardiogenic, obstructive and distributive shock. The first three categories have in common that they are associated with a fall in cardiac output. Distributive shock, such as occurs during sepsis and septic shock, however, is associated with an abnormal distribution of microvascular blood flow and metabolic distress in the presence of normal or even supranormal levels of cardiac output. This Bench-to-bedside review looks at the recent insights that have been gained into the nature of distributive shock. Its pathophysiology can best be described as a microcirculatory and mitochondrial distress syndrome, where time and therapy form an integral part of the definition. The clinical introduction of new microcirculatory imaging techniques, such as orthogonal polarization spectral and side-stream dark-field imaging, have allowed direct observation of the microcirculation at the bedside. Images of the sublingual microcirculation during septic shock and resuscitation have revealed that the distributive defect of blood flow occurs at the capillary level. In this paper, we classify the different types of heterogeneous flow patterns of microcirculatory abnormalities found during different types of distributive shock. Analysis of these patterns gave a five class classification system to define the types of microcirculatory abnormalities found in different types of distributive shock and indicated that distributive shock occurs in many other clinical conditions than just sepsis and septic shock. It is likely that different mechanisms defined by pathology and treatment underlie these abnormalities observed in the different classes. Functionally, however, they all cause a distributive defect resulting in microcirculatory shunting and regional dysoxia. It is hoped that this classification system will help in the identification of mechanisms underlying these abnormalities and indicate optimal therapies for resuscitating septic and other types of distributive shock

    Population-based neuropathological studies of dementia: design, methods and areas of investigation--a systematic review.

    Get PDF
    BACKGROUND: Prospective population-based neuropathological studies have a special place in dementia research which is under emphasised. METHODS: A systematic review of the methods of population-based neuropathological studies of dementia was carried out. These studies were assessed in relation to their representativeness of underlying populations and the clinical, neuropsychological and neuropathological approaches adopted. RESULTS: Six studies were found to be true population-based neuropathological studies of dementia in the older people: the Hisayama study (Japan); Vantaa 85+ study (Finland); CC75C study (Cambridge, UK); CFAS (multicentre, UK); Cache County study (Utah, USA); HAAS (Hawaï, USA). These differ in the core characteristics of their populations. The studies used standardised neuropathological methods which facilitate analyses on: clinicopathological associations and confirmation of diagnosis, assessing the validity of hierarchical models of neuropathological lesion burden; investigating the associations between neuropathological burden and risk factors including genetic factors. Examples of findings are given although there is too little overlap in the areas investigated amongst these studies to form the basis of a systematic review of the results. CONCLUSION: Clinicopathological studies based on true population samples can provide unique insights in dementia. Individually they are limited in power and scope; together they represent a powerful source to translate findings from laboratory to populations

    Mutations in CHMP2B in lower motor neuron predominant amyotrophic lateral sclerosis (ALS)

    Get PDF
    Background: Amyotrophic lateral sclerosis (ALS), a common late-onset neurodegenerative disease, is associated with fronto-temporal dementia (FTD) in 3-10% of patients. A mutation in CHMP2B was recently identified in a Danish pedigree with autosomal dominant FTD. Subsequently, two unrelated patients with familial ALS, one of whom also showed features of FTD, were shown to carry missense mutations in CHMP2B. The initial aim of this study was to determine whether mutations in CHMP2B contribute more broadly to ALS pathogenesis. Methodology/Principal Findings: Sequencing of CHMP2B in 433 ALS cases from the North of England identified 4 cases carrying 3 missense mutations, including one novel mutation, p. Thr104Asn, none of which were present in 500 neurologically normal controls. Analysis of clinical and neuropathological data of these 4 cases showed a phenotype consistent with the lower motor neuron predominant (progressive muscular atrophy (PMA)) variant of ALS. Only one had a recognised family history of ALS and none had clinically apparent dementia. Microarray analysis of motor neurons from CHMP2B cases, compared to controls, showed a distinct gene expression signature with significant differential expression predicting disassembly of cell structure; increased calcium concentration in the ER lumen; decrease in the availability of ATP; down-regulation of the classical and p38 MAPK signalling pathways, reduction in autophagy initiation and a global repression of translation. Transfection of mutant CHMP2B into HEK-293 and COS-7 cells resulted in the formation of large cytoplasmic vacuoles, aberrant lysosomal localisation demonstrated by CD63 staining and impairment of autophagy indicated by increased levels of LC3-II protein. These changes were absent in control cells transfected with wild-type CHMP2B. Conclusions/Significance: We conclude that in a population drawn from North of England pathogenic CHMP2B mutations are found in approximately 1% of cases of ALS and 10% of those with lower motor neuron predominant ALS. We provide a body of evidence indicating the likely pathogenicity of the reported gene alterations. However, absolute confirmation of pathogenicity requires further evidence, including documentation of familial transmission in ALS pedigrees which might be most fruitfully explored in cases with a LMN predominant phenotype

    Neutrophil-derived microvesicle induced dysfunction of brain microvascular endothelial cells in vitro

    Get PDF
    The blood-brain barrier (BBB), composed of brain microvascular endothelial cells (BMEC) that are tightly linked by tight junction (TJ) proteins, restricts the movement of molecules between the periphery and the central nervous system. Elevated systemic levels of neutrophils have been detected in patients with altered BBB function, but the role of neutrophils in BMEC dysfunction is unknown. Neutrophils are key players of the immune response and, when activated, produce neutrophil-derived microvesicles (NMV). NMV have been shown to impact the integrity of endothelial cells throughout the body and we hypothesize that NMV released from circulating neutrophils interact with BMEC and induce endothelial cell dysfunction. Therefore, the current study investigated the interaction of NMV with human BMEC and determined whether they altered gene expression and function in vitro. Using flow cytometry and confocal imaging, NMV were shown to be internalized by the human cerebral microvascular endothelial cell line hCMEC/D3 via a variety of energy-dependent mechanisms, including endocytosis and macropinocytosis. The internalization of NMV significantly altered the transcriptomic profile of hCMEC/D3, specifically inducing the dysregulation of genes associated with TJ, ubiquitin-mediated proteolysis and vesicular transport. Functional studies confirmed NMV significantly increased permeability and decreased the transendothelial electrical resistance (TEER) of a confluent monolayer of hCMEC/D3. These findings indicate that NMV interact with and affect gene expression of BMEC as well as impacting their integrity. We conclude that NMV may play an important role in modulating the permeability of BBB during an infection

    The effect of CO<sub>2</sub> laser therapy on vaginal microcirculatory parameters in an animal model for genitourinary syndrome of menopause

    Get PDF
    Background: Vaginal laser therapy for the treatment of genitourinary syndrome of menopause (GSM) has been introduced to the market with limited (pre)clinical and experimental evidence supporting its efficacy. It is suggested that vaginal laser therapy increases epithelial thickness and improves vascularization, but the underlying biological working mechanism has not been substantiated yet. Objective: To evaluate the effects of CO2 laser therapy on vaginal atrophy using noninvasive incident dark field (IDF) imaging in a large animal model for GSM. Design, Setting, and Participants: An animal study was conducted between 2018 and 2019 and included 25 Dohne Merino ewes, of which 20 underwent bilateral ovariectomy (OVX) to induce iatrogenic menopause, and 5 did not. The total study duration was 10 months. Interventions: Five months after OVX, ovariectomized ewes received monthly applications of CO2 laser (n = 7), vaginal estrogen (n = 7), or no treatment (n = 6) for 3 months. IDF imaging was performed monthly in all animals. Outcome Measurements and Statistical Analysis: The primary outcome was the proportion of image sequences containing capillary loops (angioarchitecture). Secondary outcomes included focal depth (epithelial thickness), and quantitative measures of vessel density and perfusion. Treatment effects were evaluated using ANCOVA and binary logistic regression. Results and Limitations: Compared to OVX-only, ewes treated with estrogen demonstrated a higher capillary loops proportion (4% vs. 75%, p &lt; 0.01), and higher focal depth (60 (IQR 60–80) vs. 80 (IQR 80–80) p &lt; 0.05). CO2 laser therapy did not change microcirculatory parameters. As the ewes' vaginal epithelium is thinner than that of humans, it may demand different laser settings. Conclusions: In a large animal model for GSM, CO2 laser therapy does not affect microcirculatory outcomes related to GSM, whereas vaginal estrogen treatment does. Until more homogeneous and objective evidence about its efficacy is available, CO2 laser therapy should not be adopted into widespread practice for treating GSM.</p

    Withdrawing intra-aortic balloon pump support paradoxically improves microvascular flow

    Get PDF
    Introduction: The Intra-Aortic Balloon Pump (IABP) is frequently used to mechanically support the heart. There is evidence that IABP improves microvascular flow during cardiogenic shock but its influence on the human microcirculation in patients deemed ready for discontinuing IABP support has not yet been studied. Therefore we used sidestream dark field imaging (SDF) to test our hypothesis that human microcirculation remains unaltered with or without IABP support in patients clinically ready for discontinuation of mechanical support. Methods: We studied 15 ICU patients on IABP therapy. Measurements were performed after the clinical decision was made to remove the balloon catheter. We recorded global hemodynamic parameters and performed venous oximetry during maximal IABP support (1:1) and 10 minutes after temporarily stopping the IABP therapy. At both time points, we also recorded video clips of the sublingual microcirculation. From these we determined indices of microvascular perfusion including perfused vessel density (PVD) and microvascular flow index (MFI). Results: Ceasing IABP support lowered mean arterial pressure (74 +/- 8 to 71 +/- 10 mmHg; P = 0.048) and increased diastolic pressure (43 +/- 10 to 53 +/- 9 mmHg; P = 0.0002). However, at the level of the microcirculation we found an increase of PVD of small vessels <20 mu m (5.47 +/- 1.76 to 6.63 +/- 1.90; P = 0.0039). PVD for vessels >20 mu m and MFI for both small and large vessels were unaltered. During the procedure global oxygenation parameters (ScvO(2)/SvO(2)) remained unchanged. Conclusions: In patients deemed ready for discontinuing IABP support according to current practice, SDF imaging showed an increase of microcirculatory flow of small vessels after ceasing IABP therapy. This observation may indicate that IABP impairs microvascular perfusion in recovered patients, although this warrants confirmatio

    Unravelling the enigma of selective vulnerability in neurodegeneration: motor neurons resistant to degeneration in ALS show distinct gene expression characteristics and decreased susceptibility to excitotoxicity.

    Get PDF
    A consistent clinical feature of amyotrophic lateral sclerosis (ALS) is the sparing of eye movements and the function of external sphincters, with corresponding preservation of motor neurons in the brainstem oculomotor nuclei, and of Onuf's nucleus in the sacral spinal cord. Studying the differences in properties of neurons that are vulnerable and resistant to the disease process in ALS may provide insights into the mechanisms of neuronal degeneration, and identify targets for therapeutic manipulation. We used microarray analysis to determine the differences in gene expression between oculomotor and spinal motor neurons, isolated by laser capture microdissection from the midbrain and spinal cord of neurologically normal human controls. We compared these to transcriptional profiles of oculomotor nuclei and spinal cord from rat and mouse, obtained from the GEO omnibus database. We show that oculomotor neurons have a distinct transcriptional profile, with significant differential expression of 1,757 named genes (q < 0.001). Differentially expressed genes are enriched for the functional categories of synaptic transmission, ubiquitin-dependent proteolysis, mitochondrial function, transcriptional regulation, immune system functions, and the extracellular matrix. Marked differences are seen, across the three species, in genes with a function in synaptic transmission, including several glutamate and GABA receptor subunits. Using patch clamp recording in acute spinal and brainstem slices, we show that resistant oculomotor neurons show a reduced AMPA-mediated inward calcium current, and a higher GABA-mediated chloride current, than vulnerable spinal motor neurons. The findings suggest that reduced susceptibility to excitotoxicity, mediated in part through enhanced GABAergic transmission, is an important determinant of the relative resistance of oculomotor neurons to degeneration in ALS

    The effect of CO2_{2} laser therapy on vaginal microcirculatory parameters in an animal model for genitourinary syndrome of menopause

    Full text link
    Background: Vaginal laser therapy for the treatment of genitourinary syndrome of menopause (GSM) has been introduced to the market with limited (pre)clinical and experimental evidence supporting its efficacy. It is suggested that vaginal laser therapy increases epithelial thickness and improves vascularization, but the underlying biological working mechanism has not been substantiated yet. Objective: To evaluate the effects of CO2_{2} laser therapy on vaginal atrophy using noninvasive incident dark field (IDF) imaging in a large animal model for GSM. Design, Setting, and Participants: An animal study was conducted between 2018 and 2019 and included 25 Dohne Merino ewes, of which 20 underwent bilateral ovariectomy (OVX) to induce iatrogenic menopause, and 5 did not. The total study duration was 10 months.InterventionsFive months after OVX, ovariectomized ewes received monthly applications of CO2_{2} laser (n = 7), vaginal estrogen (n = 7), or no treatment (n = 6) for 3 months. IDF imaging was performed monthly in all animals. Outcome Measurements and Statistical Analysis: The primary outcome was the proportion of image sequences containing capillary loops (angioarchitecture). Secondary outcomes included focal depth (epithelial thickness), and quantitative measures of vessel density and perfusion. Treatment effects were evaluated using ANCOVA and binary logistic regression.Results and LimitationsCompared to OVX‐only, ewes treated with estrogen demonstrated a higher capillary loops proportion (4% vs. 75%, p < 0.01), and higher focal depth (60 (IQR 60–80) vs. 80 (IQR 80–80) p < 0.05). CO2_{2} laser therapy did not change microcirculatory parameters. As the ewes' vaginal epithelium is thinner than that of humans, it may demand different laser settings. Conclusions: In a large animal model for GSM, CO2_{2} laser therapy does not affect microcirculatory outcomes related to GSM, whereas vaginal estrogen treatment does. Until more homogeneous and objective evidence about its efficacy is available, CO2_{2} laser therapy should not be adopted into widespread practice for treating GSM

    Insights into the pathological basis of dementia from population-based neuropathology studies

    Get PDF
    The epidemiological neuropathology perspective of population and community-based studies allows unbiased assessment of the prevalence of various pathologies and their relationships to late-life dementia. In addition, this approach provides complementary insights to conventional case–control studies, which tend to be more representative of a younger clinical cohort. The Cognitive Function and Ageing Study (CFAS) is a longitudinal study of cognitive impairment and frailty in the general United Kingdom population. In this review, we provide an overview of the major findings from CFAS, alongside other studies, which have demonstrated a high prevalence of pathology in the ageing brain, particularly Alzheimer's disease neuropathological change and vascular pathology. Increasing burdens of these pathologies are the major correlates of dementia, especially neurofibrillary tangles, but there is substantial overlap in pathology between those with and without dementia, particularly at intermediate burdens of pathology and also at the oldest ages. Furthermore, additional pathologies such as limbic-predominant age-related TDP-43 encephalopathy, ageing-related tau astrogliopathy and primary age-related tauopathies contribute to late-life dementia. Findings from ageing population-representative studies have implications for the understanding of dementia pathology in the community. The high prevalence of pathology and variable relationship to dementia status has implications for disease definition and indicate a role for modulating factors on cognitive outcome. The complexity of late-life dementia, with mixed pathologies, indicates a need for a better understanding of these processes across the life-course to direct the best research for reducing risk in later life of avoidable clinical dementia syndromes
    corecore