42 research outputs found

    The geological setting of the indium-rich Baal Gammon and Isabel Sn-Cu-Zn deposits in the Herberton Mineral Field, Queensland, Australia

    Get PDF
    Base metal mineralization at the Baal Gammon and Isabel deposits of the Herberton Mineral Field (HMF) is hosted in metamorphosed greywacke beds in the Hodgkinson Formation, which were intruded by granite, porphyry dykes and overlain by volcanic rocks of the Kennedy Igneous Association during the Carboniferous and Permian. The tin mineralization at the Baal Gammon deposit is hosted by a silicified, chlorite-altered, quartz-feldspar porphyry (UNA Porphyry). The tin mineralization at the Isabel deposit is in polymetallic veins hosting disseminated cassiterite. Polymetallic sulfides (Cu-Zn) and indium (In) mineralization at both deposits overprint the tin mineralization. Chalcopyrite, sphalerite, and stannite host indium in the polymetallic sulfide assemblage at both deposits. Based on overprinting relationships, the timing of tin mineralization is related to the magmatic activity at ca. 320 Ma, whereas the sulfide and indium mineralization are most likely associated with the emplacement of porphyry dykes at ca. 290 Ma. The overall magmatic activity in the HMF spreads between ca. 365 and 280 Ma, with peaks at ca. 337, 322, 305, and 285 Ma. The change from tin mineralization at ca. 320 Ma to sulfide and indium mineralization at ca. 290 Ma indicates a transition from a compressive to an extensional tectonic regime

    The Permian Watershed tungsten deposit (northeast Queensland, Australia): fluid inclusion and stable isotope constraints

    Get PDF
    The Watershed scheelite deposit is located in an extinct fore-arc basin in the Mossman Orogen of North Queensland. This fore-arc region comprises multiply deformed, Ordovician–Silurian metasedimentary rocks of the Hodgkinson Formation, and it was intruded by Carboniferous–Permian granites of the Kennedy Igneous Association. At Watershed, the Hodgkinson Formation includes strongly deformed skarn-altered conglomerate, psammite and slate units, which record four deformation events that evolved from ductile (D1–3) to brittle–ductile (D4). Early, D1–2 scheelite mineralisation in Carboniferous monzonite and skarn-altered conglomerate formed during regional prograde metamorphism, which reached upper greenschist to lower amphibolite facies conditions. Permian, D4 scheelite mineralisation was deposited in transtensional, shear-related veins, vein haloes and skarn-altered conglomerate during retrograde, lower greenschist facies metamorphism. During D4, four stages of retrograde alteration (retrograde stages 1–4) affected the rocks. Fluid inclusion assemblages in retrograde stage 2, vein scheelite and quartz are characterised by a low-salinity H2O–NaCl ± CH4 fluid (XCH4 <0.01, 1.4–8.0 wt% NaCleq). The fluid inclusions show evidence for fluid mixing between a low (∼0 wt% NaCleq) and a medium (<8 wt% NaCleq) saline fluid. Scheelite mineralisation P–T conditions were determined at ∼300 °C and 1–1.8 kbar (i.e. a depth of 3.7–6.7 km), indicative of a high geothermal gradient (35–75 °C/km), which was likely caused by the heat from the Permian granites. The presence of pyrrhotite and arsenopyrite in D4 veins (retrograde stage 4), plus graphite and methane in the fluid inclusions in scheelite, indicates reduced mineralisation conditions. Oxygen isotope compositions (δ18OVSMOW) of retrograde stage 2 scheelite (+3.8 to +7.3‰), plagioclase (+7.0 to +11.8‰) and quartz (+12.6 to +15.5‰) indicate a fluid temperature of 306 ± 56 °C with δ18OVSMOW values between +4.7 and +8.3‰. Retrograde stage 3 muscovite δDVSMOW (−73.4 to −62.7‰) and δ18OVSMOW (+11.5 to +13.2‰) values were used to calculate the O–H isotopic compositions of the fluids in equilibrium with the minerals at various possible temperatures (250–300 °C). The results are consistent with a metamorphic origin for the mineralising fluid. Sulfur isotope compositions (δ34SCDT between −2.5 and +2.8‰) for vein-hosted, retrograde stage 4 sulfides indicate that sulfur could have come from seawater or seawater sulfate, which is consistent with the local geology, even though this range overlaps with magmatic sulfur isotope compositions. Metamorphic fluids probably originated from devolatilisation reactions in the Hodgkinson Formation during prograde metamorphism. Permian intrusions acted as heat source enhancing metamorphic fluid flow and metal transport.publishedVersio

    Metamorphic diamond from the northeastern margin of Gondwana: Paradigm shifting implications for one of Earth’s largest orogens

    Get PDF
    We describe the first occurrence of diamond-facies ultrahigh pressure metamorphism along the Gondwana-Pacific margin of the Terra Australis Orogen. Metamorphic garnet grains from Ordovician metasediments along the Clarke River Fault in northeastern Queensland contain inclusions of diamond and quartz after coesite, as well as exsolution lamellae of rutile, apatite, amphibole, and silica. These features constrain minimum pressure-temperature conditions to >3.5 gigapascals and ~860°C, although peak pressure conditions may have exceeded 5 gigapascals. On the basis of these data, we interpret the Clarke River Fault to represent a Paleozoic suture zone and at least parts of the Terra Australis Orogen to have formed through classic Wilson cycle processes. The growth of the Terra Australis Orogen during the Paleozoic is largely attributed to accretionary style tectonics. These previously unknown findings indicate that the Terra Australis Orogen was not just a simple accretionary style orogen but rather a complex system with multiple tectonic styles operating in tandem including collisional tectonics

    The Dugald River-type, shear zone hosted, Zn-Pb-Ag mineralisation, Mount Isa Inlier, Australia

    Get PDF
    The Dugald River Zn-Pb-Ag mine is situated in the Mount Isa Inlier, a globally significant base metal province. Zn-Pb deposits in the Mount Isa Inlier are stratabound with four main genetic models, including SEDEX-style, remobilised SEDEX, epigenetic and Broken Hill-type mineralisation applied to interpret their formation. We propose that the Zn-Pb-Ag mineralisation at Dugald River represents a unique, shear zone hosted deposit type that formed through a series of successive deformation events during the Paleoproterozoic Isan Orogeny that concentrated the mineralisation within the Dugald River Shear Zone during two main mineralising phases. The first phase of mineralisation occurred during regional D2 shortening, which is associated with the formation of large-scale F2 folds and a regionally penetrative S2 fabric. During this phase, progressive tightening of upright F2 folds resulted in several sets of secondary space accommodating quartz-carbonate veins that were progressively rotated into parallelism with the pervasive, steep, W-dipping S2 cleavage. The quartz-carbonate veins were coevally replaced by sulphides, which migrated to extensional sites (boudin necks and fold hinges) in tight folds. Thereby creating a sulphide-rich horizon within a developing high strain zone, which during D4 developed into the Dugald River Shear Zone. The second phase of mineralisation occurred during the regional D4 transpressional deformation event and resulted in significant metal enrichment and the current geometry of the ore bodies. The significant enrichment of the mineralisation during D4 resulted from further fold tightening within the high strain zone, which resulted in the attenuation and dismembering of folds and produced a transposed fabric (S4). The sulphide veins were transposed into parallelism with S4 forming sulphide-rich planar ore textures. Strain partitioning at the contact between the ductile deforming sulphide horizon and the brittle deforming slates resulted in the development of an anastomosing shear zone, known as the Dugald River Shear Zone. A right-handed releasing bend in the shear zone produced a dilational jog and a thick, high-grade ore body. The mobilisation of sulphides within the dilational jog involved fragmentation of sulphides and wall rock, brecciation, rotation and rolling of fragments, and the formation of durchbewegung texture

    Response to Thackeray (2016) – The possibility of lichen growth on bones of Homo naledi: Were they exposed to light?

    Get PDF
    Thackeray1 questions the hypothesis of deliberate body disposal in the Rising Star Cave by Homo naledi, as proposed by Dirks and colleagues2. Thackeray proposes that lichens produced mineral staining on the skeletal remains of H. naledi. As lichens require some exposure to light, in Thackeray’s opinion, the presence of mineral staining necessitates either a direct entrance deep into the Rising Star Cave that once admitted light into the Dinaledi Chamber, or relocation of mineral-stained bones from a location exposed to light. Here we consider multiple lines of evidence that reject Thackeray’s hypothesis that lichens deposited mineral staining upon the surface of these skeletal remains. We welcome the opportunity to address the inferences presented by Thackeray, and further hope that this response may dispel misinterpretations of our research2, and of other areas of the scientific literature that bear upon site formation processes at work within the Rising Star Cave system

    New fossil remains of Homo naledi from the Lesedi Chamber, South Africa

    Get PDF
    The Rising Star cave system has produced abundant fossil hominin remains within the Dinaledi Chamber, representing a minimum of 15 individuals attributed to Homo naledi. Further exploration led to the discovery of hominin material, now comprising 131 hominin specimens, within a second chamber, the Lesedi Chamber. The Lesedi Chamber is far separated from the Dinaledi Chamber within the Rising Star cave system, and represents a second depositional context for hominin remains. In each of three collection areas within the Lesedi Chamber, diagnostic skeletal material allows a clear attribution to H. naledi. Both adult and immature material is present. The hominin remains represent at least three individuals based upon duplication of elements, but more individuals are likely present based upon the spatial context. The most significant specimen is the near-complete cranium of a large individual, designated LES1, with an endocranial volume of approximately 610 ml and associated postcranial remains. The Lesedi Chamber skeletal sample extends our knowledge of the morphology and variation of H. naledi, and evidence of H. naledi from both recovery localities shows a consistent pattern of differentiation from other hominin species

    The age of fossil StW573 (‘Little Foot’): An alternative interpretation of 26Al/10Be burial data

    Get PDF
    Following the publication (Granger DE et al., Nature 2015;522:85–88) of an 26Al/10Be burial isochron age of 3.67±0.16 Ma for the sediments encasing hominin fossil StW573 (‘Little Foot’), we consider data on chert samples presented in that publication to explore alternative age interpretations. 10Be and 26Al concentrations determined on individual chert fragments within the sediments were calculated back in time, and data from one of these fragments point to a maximum age of 2.8 Ma for the sediment package and therefore also for the fossil. An alternative hypothesis is explored, which involves re-deposition and mixing of sediment that had previously collected over time in an upper chamber, which has since been eroded. We show that it is possible for such a scenario to yield ultimately an isochron indicating an apparent age much older than the depositional age of the sediments around the fossil. A possible scenario for deposition of StW573 in Member 2 would involve the formation of an opening between the Silberberg Grotto and an upper chamber. Not only could such an opening have acted as a death trap, but it could also have disturbed the sedimentological balance in the cave, allowing unconsolidated sediment to be washed into the Silberberg Grotto. This two-staged burial model would thus allow a younger age for the fossil, consistent with the sedimentology of the deposit. This alternative age is also not in contradiction to available faunal and palaeomagnetic data. Significance:&nbsp; Data on chert samples taken close to StW573 impose a maximum age for the fossil of 2.8 Ma – younger than the 3.67 Ma originally reported. We propose and explore a two-stage burial scenario to resolve the inconsistency and to reopen the discussion on the age of fossil StW573

    The age of fossil StW573 (‘Little Foot’): Reply to comments by Stratford et al. (2017)

    Get PDF
    We reply to comments by Stratford et al. on our article ‘The age of fossil StW573 (‘Little Foot’): an alternative interpretation of 26Al/10Be burial data’, in which we revisit the burial age reported by Granger et al. for the sediments encasing the fossil and the data on which this was based

    Hominin-bearing caves and landscape dynamics in the Cradle of Humankind, South Africa

    No full text
    This paper provides constraints on the evolution of the landscape in the Cradle of Humankind (CoH), UNESCO World Heritage Site, South Africa, since the Pliocene. The aim is to better understand the distribution of hominin fossils in the CoH, and determine links between tectonic processes controlling the landscape and the evolution and distribution of hominins occupying that landscape. The paper is focused on a detailed reconstruction of the landscape through time in the Grootvleispruit catchment, which contains the highly significant fossil site of Malapa and the remains of the hominin species Australopithicus sediba.\ud \ud In the past 4 My the landscape in the CoH has undergone major changes in its physical appearance as a result of river incision, which degraded older African planation surfaces, and accommodated denudation of cover rocks (including Karoo sediments and various sil- and ferricretes) to expose dolomite with caves in which fossils collected. Differentially weathered chert breccia dykes, calibrated with ¹⁰Be exposure ages, are used to estimate erosion patterns of the landscape across the CoH. In this manner it is shown that 2 My ago Malapa cave was ~50 m deep, and Gladysvale cave was first exposed; i.e. landscape reconstructions can provide estimates for the time of opening of cave systems that trapped hominin and other fossils.\ud \ud Within the region, cave formation was influenced by lithological, layer-parallel controls interacting with cross-cutting fracture systems of Paleoproterozoic origin, and a NW–SE directed extensional far-field stress at a time when the African erosion surface was still intact, and elevations were probably lower. Cave geometries vary in a systematic manner across the landscape, with deep caves on the plateau and cave erosion remnants in valleys. Most caves formed to similar depths of 1400–1420 mamsl across much of the CoH, indicating that caves no longer deepened once Pliocene uplift and incision occurred, but acted as passive sediment traps on the landscape.\ud \ud Caves in the CoH are distributed along lithological boundaries and NNE and ESE fractures. Fossil-bearing caves have a distinct distribution pattern, with different directional controls, a high degree of clustering, a characteristic spacing of 1700 m or 3400 m, and a characteristic bi-model fractal distribution best explained by a combination of geological and biological controls. It is suggested that clustering of fossil-bearing caves reflects a Lévy flight patterns typical for foraging behavior in animals. The controlling element in this behavior could have been availability of water in or near groups of caves, resulting in preferential occupation of these caves with accumulation of diverse faunal fossil assemblages.\ud \ud The tectonic drivers shaping the dynamic landscape of the CoH did not involve large, seismically active fault lines, but complex interactions between multiple smaller fractures and joints activated in a far field stress controlled by uplift. The landscape of the CoH, with its caves and water sources and dissected landscape provided a setting favored by many animals including hominins. A modern day analog for what the CoH would have looked like 2 My ago is found 50 km east of Johannesburg, near the SE margin of the Johannesburg Dome
    corecore