7 research outputs found

    Selective catalytic reduction of NOx by hydrocarbons : high throughput screening and experimental microkinetic approaches

    Get PDF
    Le but de cette Ă©tude est de trouver un matĂ©riau catalytique pour la rĂ©duction catalytique sĂ©lective des NOx par les hydrocarbures (HC-SCR) dans l’échappement Diesel par une approche haut dĂ©bit (HTE : high throughput experiments). Ce matĂ©riau doit ĂȘtre actif Ă  basse tempĂ©rature et stable hydrothermiquement Ă  hautes tempĂ©ratures. Une bibliothĂšque de 150 catalyseurs a Ă©tĂ© synthĂ©tisĂ©e. Les catalyseurs sont constituĂ©es d’Ag, Au, Cu supportĂ©s sur Al2O3, TiO2, ZrO2, CeO2 qui peuvent ĂȘtre dopĂ©s (Ga, Mo
). Ceux-ci sont testĂ©s en parallĂšle dans un dispositif constituĂ© de 16 rĂ©acteurs (SWITCH-16) au cours rĂ©action Ă  tempĂ©rature programmĂ©e (TPR) avec un flux modĂšle (100ppm NO / 350ppm C3H6 / 15% O2 /11% H2O). Le meilleur catalyseur 5%Ag/1%P/Al2O3, testĂ© plus avant, montre une tempĂ©rature de light-off de 50°C en dessous de celle d’un catalyseur commercial de rĂ©fĂ©rence et celui-ci est stable aprĂšs un vieillissement de 16h Ă  750°C en prĂ©sence d’eau. Ce catalyseur est ensuite enduit par voie sol-gel sur un monolithe (1*2 pouces et 300 cpsi) et testĂ© sur un mini-pilote. Les tendances obtenues en rĂ©acteur Ă  lit fixe montĂ©s en parallĂšle sont confirmĂ©es sur mini-pilote. En parallĂšle une approche microcinĂ©tique expĂ©rimentale des Ă©tapes Ă©lĂ©mentaires de surface impliquĂ©es dans la HC-SCR du NO sur un catalyseur Ag/Al2O3 a Ă©tĂ© utilisĂ©e pour dĂ©terminer les Ă©tapes Ă©lĂ©mentaires contrĂŽlant la conversion du NO en prenant en compte l’adsorption compĂ©titive entre NO et CO prĂ©sent dans le gaz d’échappement Diesel. Nous avons identifiĂ© l’élimination des espĂšces Oads adsorbĂ©es sur des sites Ag° comme Ă©tape limitante pour la production de N2 et suggĂ©rĂ© une nouvelle orientation possible pour l’étude HTE.The aim of this study was to discover a catalytic material for NOx reduction by HC-SCR in Diesel exhaust which is active at the lowest temperatures and hydro thermally stable at high temperatures by using High Throughtput experiments (HTE). A library of 150 catalysts was synthesized. Catalysts are supported Ag, Au, Cu on Al2O3, TiO2, ZrO2, CeO2 and further doped with different dopants (Ga, Mo, 
). They were tested in a 16-parallel reactor (SWITCH-16) using a Temperature Program Reaction (TPR) protocol with a model feed (100ppm NO / 350ppm C3H6 / 15% O2 /11% H2O). The best catalyst formulation 5%Ag/1%P/Al2O3, which was further improved, exhibits a light off temperature of 50°C lower than a reference commercial catalyst and is stable after ageing at 750°C in presence of water for 16 hrs. For pilot testing, the best catalyst was deposited by sol-gel method on a 1x2 inch monolith (300 cpsi). We showed the consistency of catalytic results obtained in the parallel fixed beds match with monolith bench testing. In parallel a experimental microkinetic approach of surface elementary steps involved in the HC-SCR of NO on Ag/Al2O3 catalyst has been performed to reveal the elementary steps controlling the conversion of the NO reactant taking into account the competitive chemisorption between NO and CO that is present in an exhaust gas. We identified the elimination of Oads species adsorbed on Ag° sites as the limiting step for the N2 production and suggested a new orientation of a HTE study

    Selective catalytic reduction of NOx by hydrocarbons : high throughput screening and experimental microkinetic approaches

    No full text
    Le but de cette Ă©tude est de trouver un matĂ©riau catalytique pour la rĂ©duction catalytique sĂ©lective des NOx par les hydrocarbures (HC-SCR) dans l’échappement Diesel par une approche haut dĂ©bit (HTE : high throughput experiments). Ce matĂ©riau doit ĂȘtre actif Ă  basse tempĂ©rature et stable hydrothermiquement Ă  hautes tempĂ©ratures. Une bibliothĂšque de 150 catalyseurs a Ă©tĂ© synthĂ©tisĂ©e. Les catalyseurs sont constituĂ©es d’Ag, Au, Cu supportĂ©s sur Al2O3, TiO2, ZrO2, CeO2 qui peuvent ĂȘtre dopĂ©s (Ga, Mo
). Ceux-ci sont testĂ©s en parallĂšle dans un dispositif constituĂ© de 16 rĂ©acteurs (SWITCH-16) au cours rĂ©action Ă  tempĂ©rature programmĂ©e (TPR) avec un flux modĂšle (100ppm NO / 350ppm C3H6 / 15% O2 /11% H2O). Le meilleur catalyseur 5%Ag/1%P/Al2O3, testĂ© plus avant, montre une tempĂ©rature de light-off de 50°C en dessous de celle d’un catalyseur commercial de rĂ©fĂ©rence et celui-ci est stable aprĂšs un vieillissement de 16h Ă  750°C en prĂ©sence d’eau. Ce catalyseur est ensuite enduit par voie sol-gel sur un monolithe (1*2 pouces et 300 cpsi) et testĂ© sur un mini-pilote. Les tendances obtenues en rĂ©acteur Ă  lit fixe montĂ©s en parallĂšle sont confirmĂ©es sur mini-pilote. En parallĂšle une approche microcinĂ©tique expĂ©rimentale des Ă©tapes Ă©lĂ©mentaires de surface impliquĂ©es dans la HC-SCR du NO sur un catalyseur Ag/Al2O3 a Ă©tĂ© utilisĂ©e pour dĂ©terminer les Ă©tapes Ă©lĂ©mentaires contrĂŽlant la conversion du NO en prenant en compte l’adsorption compĂ©titive entre NO et CO prĂ©sent dans le gaz d’échappement Diesel. Nous avons identifiĂ© l’élimination des espĂšces Oads adsorbĂ©es sur des sites Ag° comme Ă©tape limitante pour la production de N2 et suggĂ©rĂ© une nouvelle orientation possible pour l’étude HTE.The aim of this study was to discover a catalytic material for NOx reduction by HC-SCR in Diesel exhaust which is active at the lowest temperatures and hydro thermally stable at high temperatures by using High Throughtput experiments (HTE). A library of 150 catalysts was synthesized. Catalysts are supported Ag, Au, Cu on Al2O3, TiO2, ZrO2, CeO2 and further doped with different dopants (Ga, Mo, 
). They were tested in a 16-parallel reactor (SWITCH-16) using a Temperature Program Reaction (TPR) protocol with a model feed (100ppm NO / 350ppm C3H6 / 15% O2 /11% H2O). The best catalyst formulation 5%Ag/1%P/Al2O3, which was further improved, exhibits a light off temperature of 50°C lower than a reference commercial catalyst and is stable after ageing at 750°C in presence of water for 16 hrs. For pilot testing, the best catalyst was deposited by sol-gel method on a 1x2 inch monolith (300 cpsi). We showed the consistency of catalytic results obtained in the parallel fixed beds match with monolith bench testing. In parallel a experimental microkinetic approach of surface elementary steps involved in the HC-SCR of NO on Ag/Al2O3 catalyst has been performed to reveal the elementary steps controlling the conversion of the NO reactant taking into account the competitive chemisorption between NO and CO that is present in an exhaust gas. We identified the elimination of Oads species adsorbed on Ag° sites as the limiting step for the N2 production and suggested a new orientation of a HTE study

    Isopropanol saturated TiO<SUB>2</SUB> surface regeneration by non-thermal plasma : Influence of air relative humidity

    No full text
    International audienceEnvironmental regulation on air quality requires the development of energetic efficient volatile organic compounds (VOCs) abatement techniques. Adsorption, photocatalysis, non-thermal plasma and their combinations have been widely studied for VOC treatment. Even if the plasma material (sorbent or catalyst) association appears as one of the most efficient configuration for VOC removal, it mainly consists in operating continuously the discharge on the material surface as long as the effluent flows across the reactor. This work aims at investigating another approach of plasma material association for VOC removal: in a first step, the material is used as a sorbent until the complete coverage of adsorption sites; in a second step, once VOC saturation is achieved, the discharge is ignited on the material surface. During both steps, the influence of air relative humidity (RH) is investigated in order to evaluate its impact on the process. The objectives of our approach are: (i) the reduction of energy consumption; (ii) the increase of sorbent life-times by efficient regeneration; (iii) the investigation of plasma interaction with VOC saturated materials; (iv) the investigation of air RH influence on such VOC treatment process. A packed bed reactor coated with TiO2 has been designed. IPA is used as a model VOC. First, injected power in the packed-bed reactor is characterized as a function of air RH. Complete coverage of TiO2 surface over 35% RH is suggested as a significant parameter. Then, adsorption of IPA on TiO2 was monitored until IPA breakthrough. The amount of IPA adsorbed per TiO2 surface unit is compared to values reported by other authors. The influence of air RH on reversibly and irreversibly adsorbed IPA fractions is investigated. Over 35% RH irreversible adsorption is favored, adsorption modes are discussed. Plasma regeneration of IPA saturated TiO2 surface leads simultaneously to IPA desorption and mineralization. Increasing air RH favors IPA mineralization and diminishes acetone production. Carbon balance obtained after 1 h plasma treatment reaches 91% in the presence of 50% RH. A thermal treatment is performed after each plasma treatment in order to evidence plasma insensitive adsorbed species and to restore TiO2 initial surface state. 97% of the carbon balance is collected under 50% RH after thermal treatment. During the thermal step, acetone and CO2 are mainly produced, their formation pathways are discussed

    Oxidation of isopropanol and acetone adsorbed on TiO<SUB>2</SUB> under plasma generated ozone flow: Gas phase and adsorbed species monitoring

    No full text
    International audienceThe regeneration of isopropanol (IPA) and/or acetone saturated TiO2 surface by ozone is investigated. TiO2 catalyst is placed downstream a dielectric barrier discharge and is subsequently exposed to ozone considered as the main oxidative species generated by non-thermal plasma and able to interact with the material surface at room temperature. The oxidation of isopropanol and/or acetone is monitored using two parallel and complementary infrared diagnostics: (1) Fourier Transform Infrared Spectroscopy for the analysis of the gas phase composition; and (2) Diffuse Reflectance Infrared Fourier Transform Spectroscopy for the in situ analysis of the adsorbent/catalyst surface. In this study, the pollutant is first adsorbed on the TiO2 surface, the plasma being switched off. The irreversibly adsorbed amounts of isopropanol and acetone have been respectively quantified as 5.3 &#956;mol/m2 and 1.9 &#956;mol/m2. In a second step, the plasma is switched on to regenerate the surface by mineralization of the adsorbed organic species. A 70-min plasma phase, with approximately 20 ppm of ozone constantly flowing through the adsorbent bed yields 8.5 nmol and 8.9 nmol of CO2 per injected joule of energy for isopropanol and acetone saturated surfaces, respectively. Acetone has been evidenced as the main oxidation intermediate of isopropanol on TiO2 surface. It has been proven that the complete oxidation of isopropanol and acetone is mainly limited by the acetone oxidation rate. Competitive adsorption on the surface of the catalyst between both compounds has been studied. Results obtained are compared with those observed in the photocatalytic oxidation of the same species
    corecore