50 research outputs found

    Brain areas with normatively greater cerebral perfusion in early life may be more susceptible to beta amyloid deposition in late life

    Get PDF
    Background: The amyloid cascade hypothesis characterizes the stereotyped progression of pathological changes in Alzheimer’s disease (AD) beginning with beta amyloid deposition, but does not address the reasons for amyloid deposition. Brain areas with relatively higher neuronal activity, metabolic demand, and production of reactive oxygen species in earlier life may have higher beta amyloid deposition in later life. The aim of this study was to investigate early life patterns of perfusion and late life patterns of amyloid deposition to determine the extent to which normative cerebral perfusion predisposes specific regions to future beta amyloid deposition. Materials and Methods: One hundred twenty-eight healthy, older human subjects (age: 56–87 years old; 44% women) underwent positron emission tomography (PET) imaging with [ 11 C]PiB for measures of amyloid burden. Cerebral perfusion maps derived from 47 healthy younger adults (age: 22–49; 47%) who had undergone single photon emission computed tomography (SPECT) imaging, were averaged to create a normative template, repre- sentative of young, healthy adults. Perfusion and amyloid measures were investigated in 31 cortical regions from the Hammers atlas. We examined the spatial relationship between normative perfusion patterns and amyloid pathophysiology. Results: The pattern of increasing perfusion (temporal lobe < parietal lobe < frontal lobe < insula/cingulate gyrus < occipital lobe; F(4,26) = 7.8, p = 0.0003) in young, healthy adults was not exactly identical to but approximated the pattern of increasing amyloid burden (temporal lobe < occipital lobe < frontal lobe < parietal lobe < insula/cingulate gyrus; F(4,26) = 5.0, p = 0.004) in older adults. However, investigating subregions within cortical lobes provided consistent agreement between ranked normative perfusion patterns and expected Thal staging of amyloid progression in AD (Spearman r = 0.39, p = 0.03). Conclusion: Our findings suggest that brain areas with normatively greater perfusion may be more susceptible to amyloid deposition in later life, possibly due to higher metabolic demand, and associated levels of oxidative stress and inflammation

    Increased cerebral blood volume in small arterial vessels is a correlate of amyloid-β-related cognitive decline

    Full text link
    The protracted accumulation of amyloid-β (Aβ) is a major pathologic hallmark of Alzheimer's disease and may trigger secondary pathological processes that include neurovascular damage. This study was aimed at investigating long-term effects of Aβ burden on cerebral blood volume of arterioles and pial arteries (CBVa), possibly present before manifestation of dementia. Aβ burden was assessed by 11C Pittsburgh compound-B positron emission tomography in 22 controls and 18 persons with mild cognitive impairment (MCI), [ages: 75(±6) years]. After 2 years, inflow-based vascular space occupancy at ultra-high field strength of 7-Tesla was administered for measuring CBVa, and neuropsychological testing for cognitive decline. Crushing gradients were incorporated during MR-imaging to suppress signals from fast-flowing blood in large arteries, and thereby sensitize inflow-based vascular space occupancy to CBVa in pial arteries and arterioles. CBVa was significantly elevated in MCI compared to cognitively normal controls and regional CBVa related to local Aβ deposition. For both MCI and controls, Aβ burden and follow-up CBVa in several brain regions synergistically predicted cognitive decline over 2 years. Orbitofrontal CBVa was positively associated with apolipoprotein E e4 carrier status. Increased CBVa may reflect long-term effects of region-specific pathology associated with Aβ deposition. Additional studies are needed to clarify the role of the arteriolar system and the potential of CBVa as a biomarker for Aβ-related vascular downstream pathology

    Recent advances in cerebrospinal fluid biomarkers for the detection of preclinical Alzheimer's disease

    Full text link
    PURPOSE OF REVIEW: The concept of preclinical Alzheimer's disease has emerged to describe the long 'silent' phase of the disease when significant pathophysiological changes occur in the brain but clinical symptoms are not yet manifest. In this review, a summary of the recent advances in cerebrospinal fluid (CSF) biomarker-based diagnostics of preclinical Alzheimer's disease will be presented. RECENT FINDINGS: The association between core CSF biomarkers of Alzheimer's disease and between CSF and neuroimaging markers has been a major focus of various recently published studies in cognitively healthy individuals. Longitudinal results from several research groups suggest that CSF Aβ42 is altered early in preclinical Alzheimer's disease, even preceding changes on amyloid PET imaging. In line with the proposed NIA-AA criteria, elevated tau levels and/or Aβ/tau interactions appear to be a prerequisite for neurodegeneration and future cognitive decline. Novel candidate CSF markers, including markers of neuronal and synaptic injury as well as neuroinflammation, may complement CSF-based diagnostics in preclinical Alzheimer's disease. SUMMARY: Further longitudinal research is necessary to delineate the temporal changes of core and candidate CSF biomarkers in preclinical Alzheimer's disease and to investigate their association with established and emerging neuroimaging markers as well as with comorbidities and other risk factors for age-related cognitive decline

    Möglichkeiten moderner Bildgebungstechnologien im Rahmen der Frühdiagnostik von Alzheimererkrankung

    Full text link
    Recent advances in neuroimaging technology and image analysis algorithms have significantly contributed to a better understanding of spatial and temporal aspects of brain change associated with Alzheimer Disease. The current review will demonstrate how functional (fMRI) and structural magnetic resonance imaging (MRI) techniques may be used to identify distinct patterns of brain change associated with disease progression and also increased risk for Alzheimer Disease. Moreover, Positron Emission Tomography (PET) based measures of glucosemetabolism (Fluorodeoxyglucose, FDG) and Amyloid-beta plaque density (11-C-Pittsburgh Compound B, PiB and 18-F) will be reviewed regarding their diagnostic value for assessing the individual degree of Alzheimer -pathology and thus complement the information provided by MRI and other clinical measures

    Hybrid PET-MRI in Alzheimer's Disease Research

    Full text link
    Multiple factors, namely amyloid, tau, inflammation, metabolic, and perfusion changes, contribute to the cascade of neurodegeneration and functional decline occurring in Alzheimer's disease (AD). These molecular and cellular processes and related functional and morphological changes can be visualized in vivo by two imaging modalities, namely positron emission tomography (PET) and magnetic resonance imaging (MRI). These imaging biomarkers are now part of the diagnostic algorithm and of particular interest for patient stratification and targeted drug development.In this field the availability of hybrid PET/MR systems not only offers a comprehensive evaluation in a single imaging session, but also opens new possibilities for the integration of the two imaging information. Here, we cover the clinical protocols and practical details of FDG, amyloid, and tau PET/MR imaging as applied in our institutions

    Changes of Functional and Directed Resting-State Connectivity Are Associated with Neuronal Oscillations, ApoE Genotype and Amyloid Deposition in Mild Cognitive Impairment

    Get PDF
    The assessment of effects associated with cognitive impairment using electroencephalography (EEG) power mapping allows the visualization of frequency-band specific local changes in oscillatory activity. In contrast, measures of coherence and dynamic source synchronization allow for the study of functional and effective connectivity, respectively. Yet, these measures have rarely been assessed in parallel in the context of mild cognitive impairment (MCI) and furthermore it has not been examined if they are related to risk factors of Alzheimer's disease (AD) such as amyloid deposition and apolipoprotein ε4 (ApoE) allele occurrence. Here, we investigated functional and directed connectivities with Renormalized Partial Directed Coherence (RPDC) in 17 healthy controls (HC) and 17 participants with MCI. Participants underwent ApoE-genotyping and Pittsburgh compound B positron emission tomography (PiB-PET) to assess amyloid deposition. We observed lower spectral source power in MCI in the alpha and beta bands. Coherence was stronger in HC than MCI across different neuronal sources in the delta, theta, alpha, beta and gamma bands. The directed coherence analysis indicated lower information flow between fronto-temporal (including the hippocampus) sources and unidirectional connectivity in MCI. In MCI, alpha and beta RPDC showed an inverse correlation to age and gender; global amyloid deposition was inversely correlated to alpha coherence, RPDC and beta and gamma coherence. Furthermore, the ApoE status was negatively correlated to alpha coherence and RPDC, beta RPDC and gamma coherence. A classification analysis of cognitive state revealed the highest accuracy using EEG power, coherence and RPDC as input. For this small but statistically robust (Bayesian power analyses) sample, our results suggest that resting EEG related functional and directed connectivities are sensitive to the cognitive state and are linked to ApoE and amyloid burden

    Reduced uptake of [11C]-ABP688, a PET tracer for metabolic glutamate receptor 5 in hippocampus and amygdala in Alzheimer's dementia

    Get PDF
    INTRODUCTION: Metabotropic glutamate receptors play a critical role in the pathogenesis of Alzheimer's disease due to their involvement in processes of memory formation, neuroplasticity, and synaptotoxity. The objective of the current study was to study mGluR5 availability measured by [11^{11} C]-ABP688 (ABP) in patients with clinically diagnosed Alzheimer's dementia (AD). METHODS: A bolus-infusion protocol of [11^{11} C]-ABP688 was applied in 9 subjects with AD and 10 cognitively healthy controls (Controls) to derive distribution volume estimates of mGluR5. Furthermore, we also estimated cerebral perfusion by averaging early frame signal of initial ABP bolus injection. RESULTS: Subjects with Alzheimer's dementia (mean age: 77.3/SD 5.7) were older than controls (mean age: 68.5/SD: 9.6) and scored lower on the MMSE (22.1/SD2.7 vs. 29.0/SD0.8). There were no overall differences in ABP signal. However, distribution volume ratio (DVR) for ABP was reduced in the bilateral hippocampus (AD: 1.34/SD: 0.40 vs. Control: 1.84/SD:0.31, p = .007) and the bilateral amygdala (AD:1.86/SD:0.26 vs. Control:2.33/SD:0.37 p = .006) in AD patients compared to controls. Estimate of cerebral blood flow was reduced in the bilateral hippocampus in AD (AD:0.75/SD:0.10 vs. Control:0.86/SD:0.09 p = .02). CONCLUSION: Our findings demonstrate reduced mGluR5 binding in the hippocampus and amygdala in Alzheimer's dementia. Whether this is due to synaptic loss and/or consecutive reduction of potential binding sites or reflects disease inherent mechanisms remains to be elucidated in future studies
    corecore