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The assessment of effects associated with cognitive impairment using
electroencephalography (EEG) power mapping allows the visualization of
frequency-band specific local changes in oscillatory activity. In contrast, measures
of coherence and dynamic source synchronization allow for the study of functional and
effective connectivity, respectively. Yet, these measures have rarely been assessed in
parallel in the context of mild cognitive impairment (MCI) and furthermore it has not been
examined if they are related to risk factors of Alzheimer’s disease (AD) such as amyloid
deposition and apolipoprotein ε4 (ApoE) allele occurrence. Here, we investigated
functional and directed connectivities with Renormalized Partial Directed Coherence
(RPDC) in 17 healthy controls (HC) and 17 participants with MCI. Participants underwent
ApoE-genotyping and Pittsburgh compound B positron emission tomography (PiB-
PET) to assess amyloid deposition. We observed lower spectral source power in MCI
in the alpha and beta bands. Coherence was stronger in HC than MCI across different
neuronal sources in the delta, theta, alpha, beta and gamma bands. The directed
coherence analysis indicated lower information flow between fronto-temporal (including
the hippocampus) sources and unidirectional connectivity in MCI. In MCI, alpha and
beta RPDC showed an inverse correlation to age and gender; global amyloid deposition
was inversely correlated to alpha coherence, RPDC and beta and gamma coherence.
Furthermore, the ApoE status was negatively correlated to alpha coherence and RPDC,
beta RPDC and gamma coherence. A classification analysis of cognitive state revealed
the highest accuracy using EEG power, coherence and RPDC as input. For this small
but statistically robust (Bayesian power analyses) sample, our results suggest that
resting EEG related functional and directed connectivities are sensitive to the cognitive
state and are linked to ApoE and amyloid burden.
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INTRODUCTION

Mild cognitive impairment (MCI) is a syndrome, identified
by formal testing, which is characterized by single or multiple
cognitive complaints (Albert et al., 2011). The occurrence of MCI
is accompanied on the neuronal level by structural and functional
alterations, such as gray matter atrophy (Convit et al., 1997; Jack
et al., 1999), reduced cerebral blood flow (Hirao et al., 2005; Chen
et al., 2011), or altered neuronal oscillations. The latter is seen
as abnormalities of power density at specific frequency bands in
quantitative electroencephalography (qEEG; Huang et al., 2000;
Jelic et al., 2000; Hatz et al., 2013). Hippocampal and temporo-
parietal atrophy is linked to qEEGmarkers inMCI (Moretti et al.,
2007, 2008, 2009b, 2013).

MCI can be due to underlying Alzheimer’s pathology and
MCI due to Alzheimer’s disease (AD) is separated from
Alzheimer’s dementia by the grade of functional impairment.
The characteristic pathological hallmarks of AD are extracellular
accumulation of amyloid-beta (Aβ) in the so-called amyloid-
plaques and intraneuronal deposits of hyperphosphorylated
tau peptides. Elevated amyloid deposition can trigger aberrant
patterns of structural integrity in cognitively normal elderly
individuals (Becker et al., 2011; Schreiner et al., 2014) and also
changes neuronal circuit activity at the network level (Sperling
et al., 2009; Vannini et al., 2012; Steininger et al., 2014).
Disturbed neuronal circuit activity is reflected by abnormal
mechanisms of cortical neural synchronization and coupling
that generate resting state EEG rhythms. Previous studies in
MCI or AD have shown disrupted functional EEG coherence
(i.e., coupling), between electrode pairs (Jiang, 2005; Tao
and Tian, 2005; Jiang and Zheng, 2006; Zheng et al., 2007)
and altered effective connectivity (i.e., causal effect of one
electrode over another). Reduced parietal-to-frontal directional
information flow has been reported in amnestic MCI and
mild AD (Babiloni et al., 2010). This is in line with the idea
of a common pathophysiological background for MCI and
AD (Vecchio and Babiloni, 2011). Using qEEG and statistical
pattern recognition method, it was recently shown that qEEG
can separate patients with AD from healthy elderly individuals
with a sensitivity of 84% and a specificity of 81% (Engedal
et al., 2015). Other EEG studies showed a loss of long-range
EEG synchronicity between fronto-parietal and fronto-temporal
electrode pairs in MCI and AD patients (Dauwels et al., 2009,
2010).

Homozygosity for the apolipoprotein ε4 allele (ApoE4/E4)
is considered the strongest genetic risk factor for developing
sporadic AD. Apart from atrophy of medial temporal structures,
ApoE can be considered as possible and predictive (bio-)marker
for early AD (Elias-Sonnenschein et al., 2011). Using qEEG,
an improved differentiation rate of patients with suspected AD
was demonstrated when ApoE status was added as classification
parameter (Hatz et al., 2013).

Despite the important role of amyloid deposition and ApoE
in neurodegeneration and the interrelation between them both
(as ApoE-genotype is the strongest risk factor for high amyloid-
deposition in healthy subjects), there is no study which has
examined the influence of cortical amyloid deposition—together

with ApoE—on EEG parameters in MCI. The present study
aims to examine the link between amyloid deposition and ApoE
and EEG measures such as power but also functional coherence
and effective connectivity. The advantage is the ability to test
any dependence of amyloid deposition and ApoE on functional
network properties, solely based on non-invasive and resting-
state EEG recordings. Recently, we showed that renormalized
partial directed coherence (RPDC) tracks directed connectivity
differences between children and adults in subcortical and
cortical areas (Michels et al., 2013). Based on this finding, we
hypothesize that RPDC is suitable to identify aging-related causal
effects on the brain surface and subcortical brain structures such
as the hippocampus, i.e., structures that are functionally and
structurally impaired in MCI and AD. We applied a support
vectormachine (SVM) analysis to identify the strongest influence
of examined parameters on the classification between MCI and
cognitively unaffected volunteers.

MATERIALS AND METHODS

Participants
We studied 17 right-handed participants with (amnestic) MCI
diagnosed according to standard criteria and 17 right-handed
healthy controls (HC). Groups did not differ in age, sex, or
level of education (Table 1). All volunteers were recruited
from longitudinal cohort studies (Gietl et al., 2015; Riese
et al., 2015). They underwent a comprehensive clinical work-up
including investigation of neurological status, Mini-Mental state
examination (MMSE, see Table 1), and neuropsychological
parameters. For the latter, tests from the Consortium to
Establish a Registry for AD (CERAD)-plus battery (Morris
et al., 1988, 1989) were applied including tests on verbal
and non-verbal memory (raw values were z-transformed
for further statistical analysis). None of the participants
were diagnosed with AD, epilepsy or stroke, but one had
diabetes. None were smokers (<2 cigarettes/day), drinkers
(<2 drinks/week), or depressive as assessed using the Hamilton
rating scale questionnaire (HAMILTON-D score <13, i.e., not
present to mild depression; Hamilton, 1960). There were
no other neurological or relevant general medical symptoms
or disorders. Participants gave written informed consent
prior to study participation (and were not paid for their
participation). Ethics approval was given by the cantonal ethics
commission (KEK) Zurich prior to the study. All procedures
performed in studies involving human participants were in
accordance with the ethical standards of the institutional
and/or national research committee and with the 1964 Helsinki
declaration and its later amendments or comparable ethical
standards.

Genotyping
ApoE genotyping was performed as previously described
(Hixson and Vernier, 1990). Participants were classified
according to their ApoE4-status. In the MCI group we had two
APOE4-negative (i.e., without ε4 allele occurrence) subgroups:
E2/E3 (one participant) and E3/E3 (11 participants), and two

Frontiers in Aging Neuroscience | www.frontiersin.org 2 September 2017 | Volume 9 | Article 304

http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Aging_Neuroscience/archive


Michels et al. Directed Connectivity in Mild Cognitive Impairment

TABLE 1 | Demographics.

Group Size Age Mean (SD) Sex (M = male Aβ Global ApoE4 MMSE (0–30) CERAD recall Education
F = female) positive Aβ load carriers (z-value) (years)

HC 17 71.8 (4.6) 13 M/5 F 5 1.24 (0.2) 4 29.65 (0.6) 0.75 (1.2) 15.35 (2.7)
MCI 17 72.1 (4.6) 13 M/5 F 6 1.45 (0.2) 5 28.41 (0.5) −0.95 (1.1) 14.76 (2.9)
Statistic (t-test or χ2) n.s. 0.107 n.s. n.s. 0.070 n.s. 0.002 0.00005 0.656

ApoE4-positive subgroups: E3/E4 (four participants) and E4/E4
(one participant).

Positron Emission Tomography (PET)
Acquisition
The positron emission tomography (PET) acquisition procedure
has been previously published (Steininger et al., 2014; Gietl
et al., 2015). PET scanning was performed at the PET Center
of the Division of Nuclear Medicine, Zürich University Hospital
on GE Discovery Scanners. Each participant received an
antecubital venous injection of approximately 350 MBq of
11-C-PiB (PIB from now on). A 70-min dynamic PET scan
(4 × 15, 8 × 30, 9 × 60, 2 × 180 and 10 × 300 s)
was performed. In subjects not being able to lie still in the
scanner for this time period a static image (50–70 min post
injection) was acquired for estimation of PiB-binding. Voxel
spacing was 2.34 × 2.34 × 3.27 mm. All image processing
was done automatically under visual control with PMOD
PNEURO tool Version 3.4 (PMOD LTD, Zurich, Switzerland).
PET was co-registered to the individual MR. Segmentation
was performed on the individual MRI and volume of interest
(VOI) boundaries were defined by at least 50% gray matter
probability. A maximum probability atlas (Hammers N30R83;
Hammers et al., 2003; Gousias et al., 2008) was used to define
these VOIs based on the individual segmentation of gray and
white matter. For the final statistics, the MR was normalized
to MNI space and the combined transformation matrices PET
to MR and MR to MNI were applied to the PET data. For
calculation of cortical standard uptake value ratio (SUVR),
average PiB-uptake frames 50–70 min in all bilateral cortical
brain structures of the Hammers N30R83 atlas1 including
allocortical hippocampus but excluding occipital lobe, insula,
primary motor and sensorimotor cortices—were merged using a
volume-weighted averaging procedure, ensuring that larger VOIs
contribute more to the combined signal that smaller VOIs. The
average uptake in this merged region divided by the average
bilateral cerebellar gray matter uptake (cerebellar reference) gave
the cortical PiB-SUVR. The cortical SUVR cut-off for defining a
subject as amyloid-positive (PiB+) was derived from 93 healthy
volunteers and was ≥1.265 as described before (Vandenberghe
et al., 2010).

EEG Recording
The EEG was recorded during resting state (eyes closed, 5 min)
with 64 sintered Ag/AgCl electrodes using the ‘‘BrainCap’’ (Falk-
Minow Services, Herrsching-Breitbrunn, Germany). Electrode
impedance was kept below 10 kΩ (after subtraction of the value

1http://doc.pmod.com/pneuro/7674.htm

of the safety resistors). EEG montage was based on a selection
of 10–20 system positions (Brem et al., 2010). Specifically, the
following 60 scalp electrodes were used: Fp1, Fp2, F3, F4, C3,
C4, P3, P4, O1, O2, F7, F8, T7, T8, P7, P8, Iz, Cz, Pz, FC1,
FC2, CP1, CP2, FC5, FC6, CP5, CP6, TP9, TP10, Fpz, Oz,
FT9, FT10, PO9, PO10, C1, C2, PO1, PO2, Fz, AFz, F5, F6,
FT7, FT8, FC3, FC4, C5, C6, TP7, TP8, CP3, CP4, P5, P6,
OI1, OI2, FCz, CPz and POz. F1 served as recording reference
and F2 was the ground electrode. Data were transmitted
to two high-input impedance amplifiers (BrainVision MR+,
Brain Products Co., Gilching, Germany; 250 Hz low-pass
filter, 10 s time constant, 16-bit resolution, 32 mV dynamic
range), which were connected to the EEG recording computer
via fiber optic cables. Vigilance was briefly checked in the
middle of the recording by the simple question: ‘‘Are you still
awake?’’.

EEG Analysis
EEG preprocessing and analysis was performed using Brain
Vision Analyzer 1.05. Muscle artifacts were first removed using
manual data inspection by an experience neurophysiologist.
In addition, we removed the part of the EEG during which
we checked the vigilance status and any EEG section showing
signs of sleep or drowsiness. EEG was digitally bandpass-filtered
(0.5–70 Hz, 24 dB/oct and 50 Hz Notch) and downsampled
to 256 Hz. An infomax independent component analysis
(ICA; Delorme and Makeig, 2004) was then applied and
ICA components were profiled by their topography, activation
time course and spectrogram. Components clearly assigned
to movement, e.g., (rarely occurring) eye blinks (Jung et al.,
2000) were excluded from the back projection. EEG from
all scalp channels were then transformed to the average
reference (Lehmann and Skrandies, 1980), and EEG segments
with remaining artifacts were removed. For all groups, the
mean overall data length after these pre-processing steps did
not differ between groups (HC: 4.2 min ± 0.2 min, MCI:
4.1 min ± 0.3 min, p > 0.05, two-tailed paired t-test). Next,
the power spectral density was estimated, whereby the EEG
signal was parsed in 2 s windows. For each of these segments
a fast Fourier transformation (FFT, Hanning window: 10%,
frequency resolution of 0.25 Hz) was computed per electrode
and averaged across segments. The average band power was
calculated as the integrated area under the absolute power
spectrum in the specific frequency band of interest, divided by
the width (in points) of the specific frequency band. Spectral
band source mean power and synchronization analysis (see
below) across all sources were examined for delta (1–3 Hz),
theta (4–7 Hz), alpha (8–13 Hz), beta (14–30 Hz) and gamma
(30–49 Hz).
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Analysis of Coherent Sources
A full description of the coherence analysis is given elsewhere
(Michels et al., 2013). The total interaction strength, which
is the mean coherence across all the sources for a particular
frequency band during the eyes closed condition (from now on
called coherence), was analyzed using a beamforming approach
called Dynamic Imaging of Coherent Sources (DICS; Sekihara
and Scholz, 1996; Gross et al., 2001; Hillebrand and Barnes,
2005). There are two major constraints in this analysis: first,
the analysis is created on a single dipole model, which is not
linearly correlated to other dipoles and second, the signal-to-
noise ratio is sufficiently high (Gross et al., 2001). A fixed dipole
model was used, in which the dipole source, which is responsible
for the measured EEG potentials during an epoch, remains at
a constant location. Furthermore, the dipole moment vector
maintains a constant orientation throughout the epoch and only
the magnitude varies. To determine coherence between brain
areas, the spatial maximum of the power at respective frequency
bands was identified from the grand average power maps across
all the subjects and then defined as the seed region based on the
assumption that the coherence between the reference voxel and
itself is always 1. In the next step this area of the brain or the
activated voxels are considered as noise in order to find further
coherent areas in the brain (Schoffelen et al., 2008). In this way,
we are able to identify the whole network involved in the brain
for a particular frequency band oscillation. The selection of the
reference region and the subsequent network sources was done
on an automatic basis. The output of the beamformer at a voxel
in the brain can be defined as a weighted sum of the output of
all EEG channels (Van Veen et al., 1997). The weights determine:
(1) the spatial filtering characteristics of the beamformer and are
selected to; (2) increase the sensitivity to signals from a given
voxel; and (3) additionally reduce the contribution of signals
from any noise sources (at different locations). The frequency
components and their linear interaction are represented as a
cross-spectral density (CSD) matrix. The two measures, which
can be derived from the CSD matrix, are power and coherence.
Coherence can be estimated by normalizing the CSD between
two signals with their power spectral densities. In order to
visualize power and coherence in the brain at a given frequency
range, a linear transformation is used based on a constrained
optimization problem, which acts as a spatial filter (Van Veen
et al., 1997). The spatial filter was applied to a large number
of voxels covering the entire brain, assigning to each voxel a
specific value of coherence. A voxel size of 5 mm was used in this
study. The beamformer weights for a given source (at a location
of interest) are determined by the data covariance matrix and
the forward-solution (lead-field matrix—LFM). The LFM was
estimated with specified models for the brain. In this study, the
brain was modeled by a more complex, five-concentric-sphere
model (de Munck and Peters, 1993; Van Uitert and Johnson,
2002) with a single sphere for each layer corresponding to
the white matter, gray matter, cerebral spinal fluid, skull and
skin. The volume conductor model was created using standard
T1-weighted magnetic resonance images. Part of the forward
modeling and the source analysis was done using the open source
software FieldTrip (Oostenveld et al., 2011). For both groups,

the head was modeled using the radius and the position of the
sphere with the standard electrode locations, that is, the same
head model was used for HC and MCI. The LFM contains the
information about the geometry and the conductivity of the
model. The complete description of the solution for the forward
problem has been described previously elsewhere (Muthuraman
et al., 2010). The brain region representing the strongest power
in a specific frequency band can subsequently be used as a
reference region for cortico-cortical coherence analysis. Areas
were selected by a within-subject surrogate analysis to define
the significance level, which was then used to identify areas as
activated voxels to be considered as noise for subsequent runs of
the source analysis. In order to create tomography maps, a spatial
filter using a voxel size of 5 mm was applied to a large number
of voxels (covering the entire brain). Once coherent brain areas
were identified, their activity was extracted from the surface EEG
(source space).

Directionality Analysis
Coherence only reveals components that are mutually correlated
to two signals—in the frequency domain—but does not inform
about the direction of information flow between signals. In
contrast, RPDC is a technique, based on the perspective of
Granger causality (time domain), performed in the frequency
domain to detect causal influences (i.e., directed connectivity) in
multivariate stochastic systems and provides information on the
direction of information flow between the sources (Schelter et al.,
2009). The multivariate model was based strictly on causality
(i.e., not taking into account zero-lagged or instantaneous
influences) and was used to model the pooled source signal
estimates by an autoregressive process to obtain the coefficients
of the signals in the defined frequency band. The open source
Matlab (The MathWorks, Inc., Natick, MA, USA) package
ARFIT2 was used to estimate the autoregressive coefficients from
the spatially filtered source signals (Neumaier and Schneider,
2001; Schneider and Neumaier, 2001). The correct model order
required for the determination of these coefficients was estimated
by minimizing the Akaike information criterion (Akaike, 1974).
This criterion reflects a measure of the relative goodness of fit
which has the minimum loss of information for the resulting
statistical model with an optimal order (Ding et al., 2000). After
estimating the RPDC values the significance level was calculated
from the applied data using a bootstrapping method (Kaminski
et al., 2001).

Since the information flow between brain areas is difficult
to estimate from EEG measurements, due to the presence of
noise and bias of volume conduction (Nolte et al., 2004b),
any effective connectivity measure (here, RPDC) has to be
carefully tested for its reliability to detect the underlying neuronal
interactions during any functional state of interest (here, resting
state). In this context, some authors used the imaginary part
of coherence (Nolte et al., 2004a; Dubovik et al., 2012) or time
reversal technique (TRT; Haufe et al., 2013; Michels et al., 2013).
In a simulation study, Haufe et al. (2013) demonstrated that
TRT is a suitable method to alleviate the influence of weak

2http://www.clidyn.ethz.ch/arfit/
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asymmetries (e.g., non-causal interactions caused by zero-lagged,
instantaneous coherences (i.e., volume conduction)) on the result
of any causal measure, while maintaining or even amplifying
the influence of strong asymmetries (e.g., time-lagged causal
interactions not caused by volume conduction). Hence, TRT
was applied as a second significance test on the connections
already identified by RPDC using bootstrapping as a data-driven
surrogate significance test. Accordingly, the RPDC asymmetries
should be insensitive to contributions from volume conduction
or other instantaneous interactions. In addition, our RPDC
asymmetry calculation should completely revert by applying
TRT, and therefore be only sensitive to strong causal interactions.
In another study, it was demonstrated that PDC is insensitive
to volume conduction (Joffe, 2008). We applied TRT on the
RPDC values for both groups (HC and MCI) during the 5-min
eyes-closed EEG run.

Support Vector Machine (SVM)
Classification Analysis
In classification analysis, SVM is a powerful tool for nonlinear
classification between two (or more) data sets (here nonlinear
EEG data from HC and MCI). The algorithm searches for an
optimally separating-threshold between the two data sets by
maximizing the margin between classes’ closest points (Cortes
and Vapnik, 1995). The points lying on the boundaries are
called support vectors, and the middle of the margin is the
optimal separating threshold. For the clinical parameters (PiB
and ApoE), which were linear tested with fitting a Weibull
distribution, we used the SVM with a linear kernel (Cortes and
Vapnik, 1995). In most cases, the linear separator is not ideal
for the non-clinical data based on EEG measures so a projection
into a higher-dimensional space is performed where the data
points effectively become linearly separable. Here, we have used
the polynomial function kernel for this projection due to its
good performance as discussed in Cortes and Vapnik (1995)
and used the grid search (min = 1; max = 10) to find the
few optimal input regularization parameters, namely C (Type
of classification algorithm), which is the capacity constant. The
parameter C should be carefully chosen because the larger
the C, the more the error is penalized (i.e., leads to over-
fitting) so we tested values in the range of 1–1000 and chose
a gamma of 0.25 for the polynomial kernel function (which
represents the data for the cross validation). The selection
was checked by 10-fold cross validation by taking 75% of
the data for training and 25% for testing. A soft-margin
classifier of the calculated network topology measurements was
used for every parameter, and misclassifications were weighted
by a penalty constant C. In order to optimize classification
accuracy this was calculated for every classifier. The validation
scheme was used to assess whether the included parameters of
power, coherence and (effective) connectivity allow automated
classification between groups. The vectors from the HC and
MCI patients that were included for the classification are
source power, coherence and RPDC values from five frequency
bands. The classification was conducted separately for each
analyzed parameter and finally for all the parameters together.
We reported the overall, training and testing accuracy. The

SVM analysis was repeated with age as covariate in the
model.

Statistical Analysis
Frequency-band specific spectral source mean power differences
were assessed by two-tailed t-tests. The significance of the
sources was tested by a within-subject surrogate analysis,
in which the surrogates were estimated by a Monte Carlo
random permutation shuffling one-second segments within each
subject 100 times. The p-value for each of these 100 random
permutations was estimated and then the 99th percentile p-value
was taken as the significance level in each subject (Muthuraman
et al., 2012). To ensure that any reported results (which are all
calculated for pre-defined frequency bands) are not confounded
by group differences in individuals’ alpha frequency (IAF), we
also estimated and compared individual band limits calculated
as a percentage of the IAF (Doppelmayr et al., 1998), as done in
our recent publication (Michels et al., 2013). In brief, the IAF
was calculated from the mean of all EEG channels (excluding
eye channels). According to the IAFs, the lower and upper
boundaries of the other frequency bands (delta, theta and beta)
were defined within 10% of the predefined band edges. For
instance, if the IAF was 10.1 Hz, the lower band edge for the delta
band is 1.01 Hz (0.1 (10% of 1 Hz) × 10.1 Hz) and the upper
edge is 3.03 (0.3 × 10.1 Hz). Next, we estimated the median
frequency band values across all participants to inspect whether
those values lie in the range of the defined frequency bands,
and whether the values differ within (one-sample t-tests)
and between (paired t-tests) groups. To test differences in
demographic variables between groups, two-sample t-tests
were applied on MMSE scores, age, and education and
χ2-Test on sex and ApoE (dummy coded: ApoE4+ and
ApoE4−).

Next, for the statistical comparison of the power, coherence
and RPDC values, the source power (first source), mean
coherence (or interaction strength) and mean RPDC values
between all the sources was estimated for testing the significance
between HC and MCI patients. A Friedman two-way analysis of
variance test was then performed to test for significant differences
between all these values.

In addition, we tested for significant group differences by
comparing (bidirectional) RPDC from one identified source to all
sources, in order to identify mean information flow differences
from one source to all sources between HC and MCI. For all
statistical analyses, the significance level was kept at p< 0.05 and
results were corrected formultiple comparisons using Bonferroni
correction.

Due to the non-normal distribution of Aβ (p < 0.001,
Kolmogorov-Smirnov test), and the ordinal character of ApoE
(MCI: ε2/ε3, ε3/ε3, ε3/ε4, ε4/ε4), we applied nonparametric
Spearman’s rank order correlation analysis to examine its link
to (source) power, coherence, and RPDC in both HC and
MCI. However, we did not perform this analysis for ApoE in
HC, as ApoE was dichotomous (ε3/ε3, ε3/ε4). In addition, we
computed partial correlations between EEG parameters and PIB
(and ApoE) with age as nuisance variable in the analysis. Because
of massive multiple testing (3 (EEG measures: power, coherence,
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RPDC) × 5 (frequency bands) × 2 (amyloid deposition and
ApoE status)−>30 tests), we corrected formultiple comparisons
using bootstrapping (with 1000 iterations, simple sampling) to
achieve p < 0.05 (corrected). The 95% confidence interval (CI)
is reported as well. We performed Pearson correlation analyses
between EEG measures and cognitive test scores (e.g., CERAD
or VLMT). All results were adjusted for multiplicity (for each
EEG frequency band: 3 EEG measures (power, coherence,
RPDC) × 12 cognitive measures = 36 tests) to minimize
inflation of type I error using a less conservative method
(i.e., bootstrapping with 1000 samples, 95% CI) compared to
Bonferroni correction. All statistical analyses were performed in
SPSS V22.

Bayesian Power Analyses
We also tested if the examined sample size was large enough to
call any of the observed effect size (i.e., classification accuracy)
reliable. To test this, we applied Bayesian power analyses
using the freely available software Bayesian estimation (BEST;
Kruschke, 2013, 2014). The parameters which showed ≥75% in
the SVM classifying both groups were used as inputs y1 (HC)
and y2 (MCI) for the Markov-Chain-Monte-Carlo simulation
with 100,000 sampling steps. We estimated five outputs for each
input parameter namely the mean, standard deviation, posterior
distribution prediction, normality and effect size.

RESULTS

Demographics
The two groups (HC and MCI) did not differ in age, sex and
education (Table 1, all p > 0.1). Also, age did not differ between
MCI PiB+ and MCI PiB− individuals (p = 0.53, t = 1.1, unpaired
t-test) or between all PiB+ and PiB− individuals (p = 0.12, t = 1.7,
unpaired t-test). The mean MMSE scores were significantly
higher (p = 0.0012, t = 3.4, unpaired t-test) for HC (29.6, SD: 0.6)
than for MCI (mean: 28.4, SD: 1.4). Also, CERAD recall scores
were lower for MCI than HC (Table 1).

PiB-PET
Amyloid deposition was higher (trend) in the group of MCI
subjects than in the HC group (see Table 1, p = 0.07, t = 1.9,
unpaired t-test). Only in the MCI group, PiB correlated to ApoE
(r = 0.55, p = 0.02).

EEG: Undirected Source Coherence
As shown in Figure 1, the number of identified sources was
lowest in the delta band (compared to the other frequency bands)
and sources were present in Brodmann area (BA) 6 (premotor
cortex), 32 (anterior cingulate cortex) and 9/46 (dorsolateral
prefrontal cortex, DLPFC) in both groups. Theta-band related
sources were located in BA 7 (precuneus), 9 (middle prefrontal
gyrus), 21 (parahippocampal gyrus), 32, and 46. Different sources
were involved in the alpha band, i.e., BA 4 (primary motor
cortex), 17 (primary visual cortex), 23 (posterior cingulate
cortex), 39 (angular gyrus), and 46. For beta frequency band,
sources were spatially comparable between HC and MCI and
were located in BA 6, 17, 34, 46 and cerebellum (label C). For

gamma frequency band, sources were stronger in the HC group
and comprised of BA 4, 21, 23, 34 and 39. Coherence between
the sources was significantly different between the HC and MCI
patients in the alpha (p = 0.009, t = 3.5) and beta (p = 0.01, t = 2.4)
bands across all sources (Table 2A). Other frequency bands did
not show any significant between-group differences.

EEG: Power
The mean EEG source power from the first identified source for
all five frequency bands were compared between the HC and
MCI patients. Only in case of the alpha (p = 0.008, t = 3.7)
and beta (p = 0.001, t = 4.7) frequency was there a significant
absolute power difference between the two groups, with lower
alpha and beta power in the MCI group (Table 2B). All the
other frequency bands (i.e., delta, theta and gamma) showed no
significant differences between the two groups.

EEG: Directed Source Coherence (RPDC)
The RPDC analysis revealed generally lower and more
unidirectional connections in the MCI than in the HC
group (Table 2C, Figure 2). As indicated in Figure 2, MCI
patients showed weaker (RPDC maximum: 0.18) unidirectional
connections in the theta band between frontal (BA 9/46, DLPFC)
and parietal (BA 7, precuneus as part of the somatosensory
association cortex), BA 32 and 21 (middle temporal gyrus)
sources compared to the same unidirectional sources in HC
(RPDC maximum: 0.28). For alpha, unidirectional connections
were less strong between BA 4 (primary motor cortex), 46, 23,
17 and 39 in MCI. For beta, BA 6, 17, 34 (entorhinal cortex with
parahippocampal gyrus), 46, and the cerebellum showed higher
RPDC in HC than in MCI.

As summarized in Table 2C, the mean directed coherence
(across all sources) for alpha (p = 0.002, t = 4.5) and beta
(p = 0.002, t = 4.4) showed significant differences between the
two groups. In contrast, delta, theta and gamma did not show
any significant differences between the two groups.

We then tested, if the mean information flow between an
identified source and all other sources was different between the
two groups. A full list of group differences for each frequency
band is provided in Table 3. For example, RPDC was stronger
in the delta band in HC than MCI between all three identified
sources. Specifically, the difference in the mean information
flow of source 1 to source 2 and 3 was significant (p < 0.001,
t = 12.97), i.e., weaker for MCI than HC. Additionally, the mean
information flow from source 2 and 3 to source 1 was weaker
in MCI than in HC than MCI (p < 0.00, t = −13.68). For the
other frequency bands, we observed a similar pattern such as
the (bidirectional) mean information flow was weaker in MCI
than HC.

EEG—Clinical Interactions
In MCI, we observed an inverse correlation between global
amyloid deposition and alpha coherence (r = −0.82, p < 0.001,
CI = [−0.99 −0.43]) and RPDC (r = −0.56, p = 0.02,
CI = [−0.91 0.02]) and gamma coherence (r = −0.68, p = 0.003,
CI = [−0.88 −0.28]). These results indicate that the presence of
ApoE4/E4 showed e.g., a lower alpha coherence than its absence.
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FIGURE 1 | Electroencephalography (EEG) coherence sources results. Coherence sources are shown for the five examined frequency bands: delta (1–3 Hz), theta
(4–7 Hz), alpha (8–13 Hz), beta (14–30 Hz) and gamma (30–49 Hz). Coherence can range from 0 to 1 (i.e., two sources have temporally fully aligned time courses).
Sources are displayed on a template T1-weighted brain. The first source (1) in each frequency band is the highest power source and was later used as reference for
determining the subsequent coherent sources.

MCI with a high genetic risk for AD (ε3/ε4, ε4/ε4)
demonstrated lower alpha coherence and causal interactions
than MCI with a normal genetic risk for AD (ε2/ε3, ε3/ε3).
Specifically, the ApoE status was negatively associated with alpha
coherence (r = −0.69, p = 0.002, CI = [−0.89 −0.38]), alpha
RPDC (r = −0.74, p = 0.001, CI = [−0.91 −0.43]), and beta
RPDC (r = −0.57, p = 0.02, CI = [−0.85 −0.13]). These results
are highlighted in Figure 4. As the distribution of ε4 carriers vs.
ε4 non-carriers was not uniform in our sample, we performed
unpaired t-test analyses in addition to the reported correlation

of ApoE and connectivity strength (Figure 4) for the following
measures: alpha coherence, alpha RPDC, and beta RPDC. We
compared a ‘‘no genetic risk group’’ (ε4 non-carriers, n = 25)
to a ‘‘genetic risk group’’ (ε4 carriers, n = 9). We found that the
connectivity strength was weaker for all these measures (alpha
coherence: p = 0.001, alpha RPDC: p = 0.02, and beta RPDC:
p = 0.009) in the ‘‘genetic risk group’’, corroborating the results
of the correlation analysis.

A negative association was seen relating ApoE4-status and
global amyloid deposition to alpha (r = 0.56, p = 0.01) and

TABLE 2 | Global Electroencephalography (EEG) differences between controls and mild cognitive impairment (MCI).

(A) Coherence—all sources (B) Source log power (C) RPDC
(mean ± std) (mean ± std) (mean ± std)

MCI HC MCI HC MCI HC

Delta 0.18 ± 0.03 0.21 ± 0.03 1.24 ± 0.03 1.27 ± 0.05 0.17 ± 0.03 0.18 ± 0.03
Theta 0.15 ± 0.02 0.18 ± 0.03 1.15 ± 0.06 1.15 ± 0.04 0.17 ± 0.04 0.16 ± 0.03
Alpha 0.14 ± 0.03∗ 0.19 ± 0.03 0.98 ± 0.07∗ 1.37 ± 0.06 0.15 ± 0.02∗ 0.21 ± 0.03
Beta 0.13 ± 0.03∗ 0.17 ± 0.02 0.89 ± 0.17 1.52 ± 0.09 0.19 ± 0.03∗ 0.25 ± 0.02
Gamma 0.09 ± 0.02 0.10 ± 0.02 0.83 ± 0.14 0.91 ± 0.14 0.13 ± 0.03 0.13 ± 0.02

std, standard deviation; RPDC, Renormalized Partial Directed Coherence RPDC. ∗p < 0.05, corrected.
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FIGURE 2 | EEG renormalized partial directed coherence (RPDC) results. Top two rows: RPDC for mild cognitive impairment (MCI) participants. Bottom two rows:
RPDC for healthy controls (HC). RPDC ranges between 0 and 1, and can be unidirectional or bidirectional (visualized by two red arrows). The labels indicate
Brodmann areas (BAs).

beta (r = 0.51, p = 0.02) source power in MCI. In HC, amyloid
deposition was not linked to any EEG parameters (all p > 0.12).
As for MCI, plots for alpha coherence, alpha RPDC, beta
RPDC, and gamma coherence are shown Figure 4. Despite the
fact that the groups were statistically homogeneous in age, we
repeated EEG-PiB and EEG-ApoE analyses with age included
as a nuisance variable (partial correlations). For MCI, alpha
coherence (r = −0.8, p < 0.001, CI = [−0.96 −0.56]) and
RPDC (r = −0.72, p < 0.001, CI = [−0.93 −0.33]), as well as
gamma coherence (r = −0.63, p = 0.008, CI = [−0.86 −0.23])
were still significant after controlling for age. Additionally,
beta RPDC showed a negative correlation to PiB (r = −0.55,
p = 0.03, CI = [−0.83 0.09]). In the same group, ApoE showed
comparable correlations to the above reported EEG parameters
after correcting for age (alpha coherence: r = −0.68, p = 0.004,
CI = [−0.87−0.4]; alpha RPDC: r =−0.75, p = 0.001,CI = [−0.91
−0.43]; beta RPDC: r = −0.67, p = 0.005, CI = [−0.9 −0.02]).
For HC, results remain unchanged, i.e., none of the EEG-PiB
correlations were significant after controlling for age. Age was
not correlated to any PiB, ApoE, or EEG parameters in any
of the examined groups, except for an inverse correlation to

beta power in MCI (r = −0.52, p = 0.03 CI = [−0.86 −0.04]).
For the interaction between neuropsychological values, clinical
values, and EEG we focused on CERAD recall, as this showed the
strongest statistical difference between the HC and MCI groups
(Table 1, p < 0.001, t = 4.7) relative to other neuropsychological
variables. CERAD recall scores were not linked to PiB, ApoE,
or EEG parameters in any of the examined groups (corrected or
uncorrected for age).

We then tested for interaction effects between EEG
parameters and PiB and ApoE across all particpants. We
found signifcant interactions betweeen PiB and EEG power
(all p < 0.001), coherence (all p < 0.001), and RPDC (all
p < 0.001) in all examined frequency bands. For ApoE,
interactions were seen with delta power (p < 0.001), delta
coherence (p = 0.03), theta power (p < 0.001), theta RPDC
(p = 0.02), alpha power (p< 0.001), alpha coherence (p = 0.001),
alpha RPDC (p < 0.001). In addition, beta power (p < 0.001),
beta coherence (p = 0.008), beta RPDC (p < 0.001), gamma
power (p = 0.03), gamma coherece (p = 0.01), and gamma
RPDC (p < 0.001) showerd a significant group by ApoE
interaction.
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TABLE 3 | EEG differences related to renormalized partial directed coherence
(RPDC) between healthy controls (HC) and MCI.

Freq. Source Direction t-value p-value

delta 1 1 −12.97 ∗

2 1 −13.62 ∗∗

3 1 −8.01 ∗∗

1 −1 −13.68 ∗∗

2 −1 −11.65 ∗∗

3 −1 −7.80 ∗∗

theta 1 1 −9.11 ∗∗

2 1 −11.04 ∗∗

3 1 −13.99 ∗∗

4 1 −14.05 ∗∗

5 1 −8.23 ∗∗

1 −1 −14.09 ∗∗

2 −1 −13.99 ∗∗

3 −1 −10.59 ∗∗

4 −1 −12.86 ∗∗

5 −1 −8.12 ∗∗

alpha 1 1 −10.14 ∗∗

2 1 −13.69 ∗∗

3 1 −12.80 ∗∗

4 1 −14.01 ∗∗

5 1 −11.82 ∗∗

1 −1 −7.36 ∗

2 −1 −13.21 ∗

3 −1 −13.82 ∗

4 −1 −11.99 ∗

5 −1 −12.56 ∗

beta 1 1 −12.45 ∗

2 1 −9.92 ∗

3 1 −11.82 ∗

4 1 −8.33 ∗

5 1 −12.18 ∗∗

1 −1 −7.33 ∗∗

2 −1 −9.09 ∗∗

3 −1 −7.43 ∗∗

4 −1 −7.80 ∗∗

5 −1 −13.03 ∗∗

gamma 1 1 −12.10 ∗∗

2 1 −9.38 ∗∗

3 1 −13.94 ∗

4 1 −7.35 ∗

5 1 −10.26 ∗

1 −1 −9.85 ∗

2 −1 −12.61 ∗∗

3 −1 −12.83 ∗∗

4 −1 −8.45 ∗∗

5 −1 −10.63 ∗∗

EC, eyes closed. A negative t-value indicates HC>MCI. ∗p< 0.001, ∗∗p< 0.0001.

EEG—Cognitive Scores Interactions
Even after correction for multiple comparisons, we found some
significant interactions, especially in the MCI group. In HC,
alpha RPDC was inversely correlated to digit span forward
(p = 0.009, r = −0.63) as well as to letter fluency scores (p = 0.02,
r = −0.58). In contrast, coherence was positively correlated
letter fluency scores (p = 0.04, r = 0.52). In MCI, delta RPDC
was negatively associated VLMT recognition scores (p = 0.02,
r = −0.62). For theta, MCI showed a negative association
between coherence and VLMT word learning (p = 0.003,
r = −0.73) and VLMT delayed recall scores (p < 0.001,
r = −0.86). Alpha RPDC correlated positively with VLMT
delayed recall scores (p = 0.008, r = 0.68). Beta power was

negatively linked to Stroop task scores (p = 0.03, r = −0.57)
and positively to VLMT learning (p = 0.009, r = 0.67) and
VLMT delayed recall scores (p = 0.02, r = 0.63). Gamma
power was positively associated with category fluency (p = 0.02,
r = 0.63).

SVM
The differentiation between the HC and MCI groups for all
the clinical and estimated parameters in this study was assessed
using a SVM classifier as described in the ‘‘Materials and
Methods’’ Section. For the clinical parameters (PiB and ApoE),
classification was 64.7% (PiB) and 45% (ApoE). With respect
to EEG, only parameters (using delta-gamma power, coherence
and RPDC as inputs) showing an overall classification accuracy
above 75% will be discussed here (Figure 3). In case of the
parameter alpha source EEG power, we were able to achieve
accuracy of 97.3% (training), 87.1% (testing) and 96.2% (overall).
The next parameter was alpha source directed connectivity; the
achieved accuracy was 81.6% (training), 64% (testing) and 76.8%
(overall). Using the beta frequency source EEG power as a
parameter the accuracy was 95.2% (training), 77.3% (testing), and
93.6% (overall). The beta frequency directed connectivity values
resulted in accuracy of 80.2% (training), 37.1% (testing) and 76%
(overall). Finally, by including all the available parameters the
accuracy was the highest with 99.6% (training), 87.4% (testing),
and 97.8% (overall). Using age as covariate in the analysis did not
significantly change the classification accuracies for the different
clinical and EEG parameters (results not shown).

Bayesian Power Analysis
To further validate the findings from the SVM analysis,
we used Bayesian power estimation analyses, which provide
complete distributions of credible values for group means
and their differences (Kruschke, 2013). Specifically, we tested
for EEG markers, with classification accuracy above 75%, for
the capability of credible separation. The Bayesian analyses
confirmed that for all included markers (alpha power, alpha
RPDC, beta power and beta RPDC) group differences could
be detected (effect size: 100%) with a CI of 95% using our
sample size. In contrast, for theta power (classification accuracy
below<40%), the capability of credible separation was only 61%.

DISCUSSION

In summary, MCI showed lower bidirectional information flow
between fronto-temporal sources, including the hippocampus.
Global amyloid deposition was negatively linked to alpha
coherence and effective connectivity. Volunteers with a high
genetic risk for AD demonstrated low alpha coherence and
causal interactions. Classification accuracy for determining the
cognitive state (HC or MCI) was high using EEG power,
coherence, and RPDC as combined input parameters as well as
for alpha source power on its own.

Power
So far—and this is clearly a limitation compared to our
study—other EEG studies just compared spectral power (on
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FIGURE 3 | Support vector machine (SVM) classification results.

FIGURE 4 | Significant associations between EEG connectivity measures (coherence and RPDC) and clinical parameters. (A) Interactions between EEG connectivity
measures and amyloid deposition. We show results for HC (triangles) and MCI (filled circles). (B) Interactions between EEG connectivity measures and apolipoprotein
allele (ApoE) occurrence (sorted by an increasing genetic risk for developing Alzheimer’s disease (AD): ε2/ε3, ε3/ε 3, ε3/ε4, and ε4/ε4) in MCI. Due to the non-normal
distribution of amyloid beta (Aβ; p < 0.001, Kolmogorov-Smirnov test), and the ordinal character of ApoE (MCI: ε2/ε3, ε3/ε3, ε3/ε4, ε4/ε4), we applied nonparametric
Spearman’s rank order correlation analysis. However, we did not perform this analysis for ApoE in HC, as ApoE was dichotomous (ε3/ε3, ε3/ε4). RPDC, renormalized
partial directed coherence; SUVR, standard uptake value ratio.

Frontiers in Aging Neuroscience | www.frontiersin.org 10 September 2017 | Volume 9 | Article 304

http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Aging_Neuroscience/archive


Michels et al. Directed Connectivity in Mild Cognitive Impairment

the electrode level) differences between MCI (or AD) and HC.
Hence, it is difficult to compare our spatially more precise
results on the source level to studies relying purely on scalp
EEG power. For example, AD and MCI showed elevated delta
and theta band power (Babiloni et al., 2007; Roh et al., 2011;
Hatz et al., 2013) as well as EEG slowing (Dauwels et al., 2011).
Furthermore, MCI and AD demonstrated reduced (relative)
theta power at fronto-parietal and temporal electrodes (Claus
et al., 1998; Jelic et al., 2000; Stomrud et al., 2010). Moreover,
the study by Jelic et al. (2000) showed that alpha and theta
power are good predictors to dissociate controls from MCI. In
our study, we did not find altered theta source power between
MCI and HC. This could have different reasons. First, as already
explained, it is nearly impossible to compare source-related
to scalp-related results. Any scalp related positive EEG result
on theta power could simply be results of the influence of
multiple sources that add up to elevated (or decreased) theta
power. In addition, clinical factors might influence results on
EEG power. In our sample, we carefully looked into the role
of ApoE and PiB, which none of the existing studies did.
Hence, we believe that the absence of theta power differences
between MCI and HC are not contradictory to the literature
but reflect rather state-of-the-art EEG post-processing and
clinical assessment. Roh et al. (2011) demonstrated low alpha
and beta power in AD. In line with this, our study revealed
lower mean EEG alpha and beta source power in MCI relative
to HC.

Coherence
Some EEG studies have looked at coherence in MCI and AD
(Jelic et al., 2000; Stam et al., 2003; Pijnenburg et al., 2004;
Babiloni et al., 2009, 2016; Dauwels et al., 2009; Hsiao et al.,
2013; Vecchio et al., 2014; Xu et al., 2014). For example, beta
synchronization likelihood was decreased in AD (Stam et al.,
2003). An EEG-based graph theory analysis and SVM was
applied in MCI and early stage AD demonstrating accuracy of
93% discriminating MCI from controls (McBride et al., 2013).
Recently, we reported shape alterations in subcortical regions in
a similar MCI sample (Leh et al., 2016). We observed reduced
inter-thalamic coherence too, which might be the result of the
known (sub)-cortical structural impairments in MCI and AD
(de Jong et al., 2011; Pievani et al., 2013; Cho et al., 2014).
We found lower beta band related coherence in MCI in the
entorhinal cortex, a region that is strongly affected by atrophy
with increasing cognitive decline.

Prefrontal regions (i.e., BA 9 and 46) demonstrated lower
delta-alpha coherence in the MCI group. The DLPFC is
recognized for its role in working memory-related processes
(Mars and Grol, 2007) and is functionally impaired in MCI
and AD (Saykin et al., 1999). Furthermore, associative (BA 39),
parietal (BA 7), and cingulate regions (BA 23), regions which
are involved in attention processes, showed weaker coherence in
MCI (Kondo et al., 2004). In addition, intra-regional coherence
of the premotor and motor cortex (BA 4 and 6, respectively)
was diminished across nearly all frequency bands in MCI. These
changes extend an EEG study in early AD and MCI (Hsiao
et al., 2014), which additionally reported altered connectivity

in AD in parietal, cingulate, and medial regions, brain areas in
which we also reported lower coherence in MCI. In general,
volume conduction can especially impact undirected coherence,
however by choosing the correct reference scheme like average
reference (as used in this study) and the beamformer spatial
transformation this effect can be avoided (Cohen, 2015a,b; Tenke
and Kayser, 2015). In our study, gamma source coherence (and
power) was stronger in HC than in MCI across all sources
(although not significantly different between groups). This result
was expected as gamma oscillations play a pivotal role in
cognitive function. In mice, Colgin et al. (2009) demonstrated
that fast and slow gamma information oscillations are relevant
for information transfer and memory storage between areas of
the entorhinal cortex.Moreover, the power of gamma oscillations
positively correlates to working memory load in the prefrontal
cortex. Alterations in gamma power (and coherence) have been
reported in EEG studies examining patients with MCI and AD
and it is known that altered gamma power is associated with
hippocampal atrophy and memory impairment (Moretti et al.,
2009a,b).

Directed Coherence
A loss of long-range directional information flow has been
reported in MCI and AD, reflected as lower alpha and beta
parieto-to-frontal information flow (Vecchio and Babiloni,
2011). We found lower and overall less bidirectional information
flow in MCI in these frequency bands as well as in theta. Yet,
causal information flow in MCI was weaker from parietal-to-
frontal sources, rather than the other way around, suggesting
an imbalance in directed connectivity of a major attentional
network. RPDC also identified abnormal information flow
between cortical and sub-cortical regions, as beta RPDC was
weaker between motoric and hippocampal areas in MCI.
We found significantly stronger gamma band RPDC in HC
compared to MCI for sources located in the entorhinal and
mediotemporal cortex, which could indicate that even resting-
state related gamma band oscillations are disturbed in MCI
in brain regions associated with memory and attentional
processing. Alterations in RPDC were also present in the
angular and posterior cingulate cortex, areas that have been
commonly linked to complex cognitive operations such as
mental rotation or mental calculation (Nikolaev and Anokhin,
1997; Cebolla et al., 2014; Ueda et al., 2015). Lower gamma
RPDC was additionally evident in MCI patients between sources
of the parietal, entorhinal and primary motor cortex, indicating
a disturbed connection between executive and attentional
resources. We conclude that patients with MCI demonstrate
impairments in gamma band related directed connectivity
in brain regions traditionally associated with task-related
processing.

We found lower RPDC in the cerebellum in MCI than
HC. Cerebellar degenerative processes can lead to deficits in
verbal and nonverbal intelligence, verbal associative learning,
and visuospatial skills (Akshoomoff et al., 1992). Regarding
undirected connectivity, it is known that frontal coherence in
the alpha band is linked to fiber tracts of the cerebellum and
other brain regions in MCI and HC (Teipel et al., 2009). Altered
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functional and effective EEG connectivity among long-range
cortical networks (i.e., fronto-parietal and fronto-temporal) has
been reported in MCI and AD in the frequency range <12 Hz
(Babiloni et al., 2004; Teipel et al., 2016). Additionally, Koenig
et al. (2005) also reported in two independent data sets reduced
coherence in MCI and AD in the alpha, beta and gamma bands.
Directed connectivity changes (using EEG) of the cerebellum
have not been examined in the context of MCI or AD. We
observed lower beta RPDC of the cerebellum to the DLPFC
(BA 46) and entorhinal cortex (BA 34, parahippocampal gyrus)
in MCI compared to HC. We suggest that the decreased
directed connectivity in the cerebellum in MCI might reflect
a sign of disturbed connectivity to important brain regions
involved in long-term memory (such as the entorhinal cortex)
as well as executive control and attention (such as the
DLPFC).

The Link between Amyloid Deposition and
ApoE to EEG Measures
Current AD models revealed that the cortical EEG is linked
to the presence of Aβ (Wang et al., 2002; Bobkova et al.,
2008; Jyoti et al., 2010; Corbett et al., 2013; Schneider et al.,
2014). For example, lower theta and elevated beta/gamma
activity was found in transgenic mice carrying mutated amyloid
precursor protein (APP), which mimic certain features of
AD and which develop Aβ a few months after birth (Wang
et al., 2002). In middle-aged rats, it could be shown that
the recombinant form of secreted APP elevated low frequency
cortical and hippocampal EEG power, indicating the effect of
Aβ on neuronal function (Sánchez-Alavez et al., 2007). In a
computational model, it was recently found that Aβ can induce
(hippocampal) theta band power changes (Zou et al., 2011). A
recent study examined in patients with early stages of AD the
link between Aβ42 (based on measures from the cerebrospinal
fluid), phosphorylated tau protein (p-tau), and (resting-state)
EEG alpha dipolarity and its standard deviation (Kouzuki et al.,
2013). The authors found a negative correlation between alpha
dipolarity and p-tau as well as between alpha dipolarity and
Aβ42/p-tau. Our study highlights the link between abnormally
high levels of cortical amyloid and altered EEG measures in
MCI, reflected by lower alpha coherence and RPDC. We hence
suggest that significant amyloid burden affects global neuronal
network properties as we found effects of cortical amyloid
burden on both undirected and directed EEG coherence. No
interactions were seen in HC between cortical amyloid and
any EEG parameter, indicating that only an elevated level of
amyloid burden (as seen in MCI) leads to reduced inter-regional
connectivity.

An increased genetic risk for developing AD was associated
with reduced undirected (alpha) connectivity and (alpha
and beta) directed connectivity. This suggests that ε4 allele
presence reduces neuronal communication in EEG power
rhythms required for guiding important cognitive-attentional
and executive functions (Klimesch, 2012). Especially because of
the triple association observed between coherence (and RPDC),
amyloid deposition, and ApoE ε4 status, one can ask if the
changes in those EEG bands are the consequence of elevated

amyloid deposition (Babiloni et al., 2013). Alternatively, this
might be due to an increased genetic risk for developing or
elevated p-tau protein levels (Ferrazzoli et al., 2013). Answering
this question is beyond the scope of the present study, as
this would require the examination of cortical levels of tau
or large enough cohorts (including HC and MCI) with and
without elevated amyloid and ε4 allele presence. Nevertheless,
our results are in line with EEG studies that reported an
association between ApoE and (source) power, specifically those
that found a more pronounced EEG slowing in ApoE ε4 positive
participants (Lehtovirta et al., 1996, 2000; Ponomareva et al.,
2008). The observed interaction between alpha power and ApoE
seems to be already present in young (−21 years) ε4 carriers
(Lee et al., 2012). Furthermore, these subjects showed reduced
functional connectivity not only in our study (i.e., as negative
interaction between the ApoE status with alpha mean coherence,
alpha mean RPDC, beta mean RPDC, and gamma mean
source coherence), but also in another qEEG study (Jelic et al.,
1997).

SVM
SVM has been used recently to classify AD and MCI patients
with functional connectivity from functional magnetic resonance
imaging (fMRI) data, achieving a 75% accuracy distinguishing
healthy participants fromMCI, and 97% accuracy distinguishing
MCI from AD (Challis et al., 2015). A new hyper-network brain
connectivity method was used for classification of MCI from
HC using fMRI (Jie et al., 2014). Diffusion tensor imaging data
have been used previously for classification using SVM for MCI
(Dyrba et al., 2015), MCI and AD (Jung et al., 2015), and
MRI-based classification between AD and MCI (Yang et al.,
2013). Also here, good classification accuracy was achieved
(86.9%) for example differentiating MCI from AD (Jung et al.,
2015). EEG resting state source based coherence between AD
and MCI has been shown earlier to have differences in delta
coherence in the sensorimotor network (Hsiao et al., 2014). The
importance of beta oscillations in differentiating MCI from HC
have been previously discussed during cognitive performance
tasks (Güntekin et al., 2013). In another study using beta
frequency from EEG as an integrative biomarker for predicting
the disease progression from MCI to AD (Poil et al., 2013).
Nevertheless, all the above-mentioned studies have used fMRI
for the classification in SVM or in EEG at selective frequency
bands and tasks. In this study, we have used a more global whole-
brain approach to search for the ideal biomarkers (i.e., frequency
band specific EEG power, coherence, effective connectivity) to
differentiate between HC and MCI. We found a higher overall
classification accuracy (97.8%). Ultimately, the alpha source
power showed the highest parameter classification accuracy,
which highlights the essential role of alpha oscillations during
resting state for differentiating between the two cognitive states.
Using a logistic regression model, both delta power and ApoE
can separate patients with very early stages of probable AD
from MCI (Hatz et al., 2013). Furthermore, the classification
was even better (trend) for the combined compared to the
EEG only model. However, this effect was not seen in our
combined model (which contained EEG power from the delta

Frontiers in Aging Neuroscience | www.frontiersin.org 12 September 2017 | Volume 9 | Article 304

http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Aging_Neuroscience/archive


Michels et al. Directed Connectivity in Mild Cognitive Impairment

to the gamma band) and might rely on the fact that we have
only studied patients with MCI (relative to HC) and not patients
with AD. Another reason for the weak classification results using
ApoE might be that we do not have many participants with
an ApoE ε4/ε4 configuration. We think that the classification
(using ApoE or PiB) is lower compared to other studies as we
aimed to distinguish not MCI due to AD, which is characterized
by positive amyloid—PET fromHC, but MCI as a heterogeneous
entity defined by cognitive impairment from HC (i.e., healthy
aging).

Limitations
Due to the small group sizes, our study might be considered
exploratory. Importantly, however, we argue that the observed
findings (on coherence and RDPC) do represent reliable group
differences according to the results of the Bayesian power
analyses. This important statistical justification (for our sample
size and the robustness of our results) is often not performed
in other EEG studies on MCI (or AD) with similar or even
larger sample sizes. In addition, all results were corrected for
multiple comparisons using Bonferroni correction in order to
minimize false positive results. Furthermore, this is one of the
few studies which considers EEG, amyloid burden, and genetic
risk in both MCI and HC. We cannot exclude the presence of
vascular damage as we did not record T2 or FLAIR images.
Yet, we can argue than none of our subjects had any significant
stenosis (based on the evaluation of the MR angiography
images).

CONCLUSION

This study found that both functional and directed connectivities
are sensitive to cognitive alterations, amyloid deposition and
genetic risk, as the distribution and directionality of functional
connections differ between brains of ‘‘healthy’’ elderly and
participants with MCI.
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