2,414 research outputs found

    Applications and limitations of electron correlation microscopy to study relaxation dynamics in supercooled liquids

    Get PDF
    Electron correlation microscopy (ECM) is a way to measure structural relaxation times, τ, of liquids with nanometer-scale spatial resolution using coherent electron scattering equivalent of photon correlation spectroscopy. We have applied ECM with a 3.5 nm diameter probe to Pt57.5Cu14.7Ni5.3P22.5 amorphous nanorods and Pd40Ni40P20 bulk metallic glass (BMG) heated inside the STEM into the supercooled liquid region. These data demonstrate that the ECM technique is limited by the characteristics of the time series, which must be at least 40τ to obtain a well-converged correlation function g2(t), and the time per frame, which must be less than 0.1τ to obtain sufficient sampling. A high-speed direct electron camera enables fast acquisition and affords reliable g2(t) data even with low signal per frame

    Acoustic Emission from crumpling paper

    Full text link
    From magnetic systems to the crust of the earth, many physical systems that exibit a multiplicty of metastable states emit pulses with a broad power law distribution in energy. Digital audio recordings reveal that paper being crumpled, a system that can be easily held in hand, is such a system. Crumpling paper both using the traditional hand method and a novel cylindrical geometry uncovered a power law distribution of pulse energies spanning at least two decades: (exponent 1.3 - 1.6) Crumpling initally flat sheets into a compact ball (strong crumpling), we found little or no evidence that the energy distribution varied systematically over time or the size of the sheet. When we applied repetitive small deformations (weak crumpling) to sheets which had been previously folded along a regular grid, we found no systematic dependence on the grid spacing. Our results suggest that the pulse energy depends only weakly on the size of the paper regions responsible for sound production.Comment: 12 pages of text, 9 figures, submitted to Phys. Rev. E, additional information availible at http://www.msc.cornell.edu/~houle/crumpling

    13CO Cores in Taurus Molecular Cloud

    Full text link
    Young stars form in molecular cores, which are dense condensations within molecular clouds. We have searched for molecular cores traced by 13^{13}CO J=10J=1\to 0 emission in the Taurus molecular cloud and studied their properties. Our data set has a spatial dynamic range (the ratio of linear map size to the pixel size) of about 1000 and spectrally resolved velocity information, which together allow a systematic examination of the distribution and dynamic state of 13^{13}CO cores in a large contiguous region. We use empirical fit to the CO and CO2_2 ice to correct for depletion of gas-phase CO. The 13^{13}CO core mass function (13^{13}CO CMF) can be fitted better with a log-normal function than with a power law function. We also extract cores and calculate the 13^{13}CO CMF based on the integrated intensity of 13^{13}CO and the CMF from 2MASS. We demonstrate that there exists core blending, i.e.\ combined structures that are incoherent in velocity but continuous in column density. The core velocity dispersion (CVD), which is the variance of the core velocity difference δv\delta v, exhibits a power-law behavior as a function of the apparent separation LL:\ CVD (km/s) L(pc)0.7\propto L ({\rm pc})^{0.7}. This is similar to Larson's law for the velocity dispersion of the gas. The peak velocities of 13^{13}CO cores do not deviate from the centroid velocities of the ambient 12^{12}CO gas by more than half of the line width. The low velocity dispersion among cores, the close similarity between CVD and Larson's law, and the small separation between core centroid velocities and the ambient gas all suggest that molecular cores condense out of the diffuse gas without additional energy from star formation or significant impact from converging flows.Comment: 46 pages, 23 figures, accepted by Ap

    Voluntary Saccade Training Protocol in Persons With Parkinson’s Disease and Healthy Adults

    Get PDF
    Background: Voluntary saccade function gradually decreases during both the progression of Parkinson’s disease (PD) and neurologically healthy adult aging. Voluntary saccades display decreased length and increased saccade latency, duration, and the number of compensatory saccades in aging and PD. Saccades serve as the key eye movement for maintaining salient features of the visual environment on the high visual acuity fovea of the retina. Abnormal saccade behavior has been associated with freezing of gait in PD. We have not identified any studies that have investigated improvement in voluntary saccade function using voluntary saccade training.Objective: We report an experimental protocol that tests a training paradigm following the principle of specificity to improve voluntary saccade velocity and amplitude, while decreasing latency and the number of compensatory saccades.Methods: Persons with PD (n = 22) and persons with no known neurological disorders (n = 22) between the ages of 40 and 65 years will be recruited. In a randomized-block study design, all participants will perform voluntary saccades to targets in eight cardinal and intercardinal directions. In each of the eight sessions during the four-week intervention period, participants will train at three target amplitudes. Participants will perform 40 trials for each amplitude block, consisting of five randomly presented repetitions for each direction. Voluntary and reflexive saccades will be recorded pre- and post-intervention, along with clinical mobility assessment using the Movement Disorder Society Unified Parkinson’s Disease Rating Scale. Mobility scores, the amplitude, latency, and duration of the first saccade, and the number of saccades to reach the fixation target will be analyzed using an ANOVA of mixed effects.Discussion: This protocol holds promise as a potential method to improve voluntary saccade function in persons with PD. Should persons with PD not improve on any outcome following the intervention, this lack of response may support the use of saccade assessment as a response biomarker for the diagnosis of PD.Trial Registration: This protocol was retrospectively registered at ISRCTN (ISRCTN.com) since July 25, 2018. The first participant was recruited March 12, 2016. The protocol identifier is 17784042.Descriptive Title: A two-arm, pre/post-protocol to compare the effects of a four-week voluntary saccade training intervention in persons with Parkinson’s disease and healthy adults aged forty years or older

    Fast Photon Detection for Particle Identification with COMPASS RICH-1

    Get PDF
    Particle identification at high rates is an important challenge for many current and future high-energy physics experiments. The upgrade of the COMPASS RICH-1 detector requires a new technique for Cherenkov photon detection at count rates of several 10610^6 per channel in the central detector region, and a read-out system allowing for trigger rates of up to 100 kHz. To cope with these requirements, the photon detectors in the central region have been replaced with the detection system described in this paper. In the peripheral regions, the existing multi-wire proportional chambers with CsI photocathode are now read out via a new system employing APV pre-amplifiers and flash ADC chips. The new detection system consists of multi-anode photomultiplier tubes (MAPMT) and fast read-out electronics based on the MAD4 discriminator and the F1-TDC chip. The RICH-1 is in operation in its upgraded version for the 2006 CERN SPS run. We present the photon detection design, constructive aspects and the first Cherenkov light in the detector.Comment: Proceedings of the Imaging 2006 conference, Stockholm, Sweden, 27-30 June 2006, 5 pages, 6 figures, to appear in NIM A; corrected typo in caption of Fig.

    Fast photon detection for the COMPASS RICH detector

    Get PDF
    The COMPASS experiment at the SPS accelerator at CERN uses a large scale Ring Imaging CHerenkov detector (RICH) to identify pions, kaons and protons in a wide momentum range. For the data taking in 2006, the COMPASS RICH has been upgraded in the central photon detection area (25% of the surface) with a new technology to detect Cherenkov photons at very high count rates of several 10^6 per second and channel and a new dead-time free read-out system, which allows trigger rates up to 100 kHz. The Cherenkov photons are detected by an array of 576 visible and ultra-violet sensitive multi-anode photomultipliers with 16 channels each. The upgraded detector showed an excellent performance during the 2006 data taking.Comment: Proceeding of the IPRD06 conference (Siena, Okt. 06

    The Fast Read-out System for the MAPMTs of COMPASS RICH-1

    Full text link
    A fast readout system for the upgrade of the COMPASS RICH detector has been developed and successfully used for data taking in 2006 and 2007. The new readout system for the multi-anode PMTs in the central part of the photon detector of the RICH is based on the high-sensitivity MAD4 preamplifier-discriminator and the dead-time free F1-TDC chip characterized by high-resolution. The readout electronics has been designed taking into account the high photon flux in the central part of the detector and the requirement to run at high trigger rates of up to 100 kHz with negligible dead-time. The system is designed as a very compact setup and is mounted directly behind the multi-anode photomultipliers. The data are digitized on the frontend boards and transferred via optical links to the readout system. The read-out electronics system is described in detail together with its measured performances.Comment: Proceeding of RICH2007 Conference, Trieste, Oct. 2007. v2: minor change
    corecore