42 research outputs found

    The Transfer of Agricultural Water to Municipal and Industrial Usages

    Get PDF
    The water that is available for beneficial use in Utah is quickly approaching full appropriation; water that has been claimed is nearing the amount that is available for use. The Division of Water Resources of the State of Utah has organized a three-part plan to Plan, Conserve, Develop and Protect Utah\u27s Water Resources. One of these three elements has a focus to provide comprehensive water planning. Such planning is best achieved when current and accurate data on the uses of the state\u27s water are available. The primary purpose of this thesis was to provide an evaluation, from data collected on various case studies across the state, on the accuracy of water rights information. The studies were selected based on land that had recently been developed from agricultural usage to residential, commercial, or other municipal uses. After identifying the accuracy of the water rights information, observations to the methods of recording water right transfers were made. A template to summarize a municipality\u27s water rights will also be made available

    Comparison of the determination of a low-concentration active ingredient in pharmaceutical tablets by backscatter and transmission raman spectrometry

    Get PDF
    A total of 383 tablets of a pharmaceutical product were analyzed by backscatter and transmission Raman spectrometry to determine the concentration of an active pharmaceutical ingredient (API), chlorpheniramine maleate, at the 2% m/m (4 mg) level. As the exact composition of the tablets was unknown, external calibration samples were prepared from chlorpheniramine maleate and microcrystalline cellulose (Avicel) of different particle size. The API peak at 1594 cm(-1) in the second derivative Raman spectra was used to generate linear calibration models. The API concentration predicted using backscatter Raman measurements was relatively insensitive to the particle size of Avicel. With transmission, however, particle size effects were greater and accurate prediction of the API content was only possible when the photon propagation properties of the calibration and sample tablets were matched. Good agreement was obtained with HPLC analysis when matched calibration tablets were used for both modes. When the calibration and sample tablets are not chemically matched, spectral normalization based on calculation of relative intensities cannot be used to reduce the effects of differences in physical properties. The main conclusion is that although better for whole tablet analysis, transmission Raman is more sensitive to differences in the photon propagation properties of the calibration and sample tablets

    Building and Managing Makerspaces in Extension

    Get PDF
    As traditional face-to-face Extension office interactions are supplanted by online education options, the makerspace offers a venue for authentic engagement between Extension and the community. In makerspaces, learners make and learn from one another in a cooperative learning environment. Through involvement in the maker movement, Extension has an opportunity to apply the skills and knowledge of land-grant educators and Extension volunteers in a new and meaningful way. Creating and supporting makerspaces will increase Extension\u27s visibility and allow for the delivery of content to a new audience. Such efforts will assist Extension in staying relevant in the 21st century

    In situ monitoring of powder blending by non-invasive Raman spectrometry with wide area illumination

    Get PDF
    A 785 nm diode laser and probe with a 6 mm spot size were used to obtain spectra of stationary powders and powders mixing at 50 rpm in a high shear convective blender. Two methods of assessing the effect of particle characteristics on the Raman sampling depth for microcrystalline cellulose (Avicel), aspirin or sodium nitrate were compared: (i) the information depth, based on the diminishing Raman signal of TiO2 in a reference plate as the depth of powder prior to the plate was increased, and (ii) the depth at which a sample became infinitely thick, based on the depth of powder at which the Raman signal of the compound became constant The particle size, shape, density and/or light absorption capability of the compounds were shown to affect the "information" and "infinitely thick" depths of individual compounds. However, when different sized fractions of aspirin were added to Avicel as the main component, the depth values of aspirin were the same and matched that of the Avicel: 1.7 mm for the "information" depth and 3.5 mm for the "infinitely thick" depth. This latter value was considered to be the minimum Raman sampling depth when monitoring the addition of aspirin to Avicel in the blender. Mixing profiles for aspirin were obtained non-invasively through the glass wall of the vessel and could be used to assess how the aspirin blended into the main component, identify the end point of the mixing process (which varied with the particle size of the aspirin), and determine the concentration of aspirin in real time. The Raman procedure was compared to two other non-invasive monitoring techniques, near infrared (NIR) spectrometry and broadband acoustic emission spectrometry. The features of the mixing profiles generated by the three techniques were similar for addition of aspirin to Avicel. Although Raman was less sensitive than NIR spectrometry, Raman allowed compound specific mixing profiles to be generated by studying the mixing behaviour of an aspirin-aspartame-Avicel mixture

    Innovate Extension Events: Creating Space for Innovation in Extension

    Get PDF
    Extension professionals are being challenged to innovate their work, yet day-to-day responsibilities do not always allow time or space for creativity and innovation. In early 2016, Ohio State University Extension held its inaugural Innovate Extension event, a hackathon-style gathering focused on creative collaboration during which teams competed for grant funds by developing an idea, plan, and pitch over the course of a day. Turnout exceeded expectations, and participants gave high marks to the experience. Due to the event\u27s success, additional Innovate Extension events have been hosted at North Dakota State University, Utah State University, and Oregon State University. This article provides highlights and outcomes

    Quantitative In-situ Monitoring of Parahydrogen Fraction Using Raman Spectroscopy

    Get PDF
    Raman spectroscopy has been used to provide a rapid, noninvasive, and nondestructive quantification method for determining the parahydrogen fraction of hydrogen gas. The basis of the method is the measurement of the ratio of the first two rotational bands of hydrogen at 355 cm −1 and 586 cm −1 corresponding to parahydrogen and orthohydrogen, respectively. The method has been used to determine the parahydrogen content during a production process and a reaction. In the first example, the performance of an in-house liquid nitrogen cooled parahydrogen generator was monitored both at-line and on-line. The Raman measurements showed that it took several hours for the generator to reach steady state and, hence, for maximum parahydrogen production (50%) to be reached. The results obtained using Raman spectroscopy were compared to those obtained by at-line low-field nuclear magnetic resonance (NMR) spectroscopy. While the results were in good agreement, Raman analysis has several advantages over NMR for this application. The Raman method does not require a reference sample, as both spin isomers (ortho and para) of hydrogen can be directly detected, which simplifies the procedure and eliminates some sources of error. In the second example, the method was used to monitor the fast conversion of parahydrogen to orthohydrogen in situ. Here the ability to acquire Raman spectra every 30 s enabled a conversion process with a rate constant of 27:4 * 10 -4 s −1 to be monitored. The Raman method described here represents an improvement on previously reported work, in that it can be easily applied on-line and is approximately 500 times faster. This offers the potential of an industrially compatible method for determining parahydrogen content in applications that require the storage and usage of hydrogen

    Effect of particle properties of powders on the generation and transmission of raman scattering

    Get PDF
    Transmission Raman measurements of a 1 mm thick sulfur-containing disk were made at different positions as it was moved through 4 mm of aspirin (150-212 mu m) or microcrystalline cellulose (Avicel) of different size ranges (<38, 53-106, and 150-212 mu m). The transmission Raman intensity of the sulfur interlayer at 218 cm(-1) was lower when the disk was placed at the top or bottom of the powder bed, compared to positions within the bed and the difference between the sulfur intensity at the outer and inner positions increased with Avicel particle size. Also, the positional intensity difference was smaller for needle-shaped aspirin than for granular Avicel of the same size. The attenuation coefficients for the propagation of the exciting laser and transmitted Raman photons through the individual powders were the same but decreased as the particle size of Avicel increased; also, the attenuation coefficients for propagation through 150-212 mu m aspirin were almost half of those through similar sized Avicel particles. The study has demonstrated that particulate size and type affect transmitted Raman intensities and, consequently, such factors need to be considered in the analysis of powders, especially if particle properties vary between the samples

    Temperature correction of spectra to improve solute concentration monitoring by in situ ultraviolet and mid-infrared spectrometries towards isothermal local model performance

    Get PDF
    Changes in temperature can significantly affect spectroscopic-based methods for in situ monitoring of processes. As varying temperature is inherent to many processes, associated temperature effects on spectra are unavoidable, which can hinder solute concentration determination. Ultraviolet (UV) and mid-infrared (IR) data were acquired for l-ascorbic acid (LAA) in MeCN/H2O (80:20 w/w) at different concentrations and temperatures. For both techniques, global partial least squares (PLS) models for prediction of LAA concentration constructed without preprocessing of the spectra required a high number of latent variables to account for the effects of temperature on the spectra (root mean square error of cross validation (RMSECV) of 0.18 and 0.16 g/100 g solvent, for UV and IR datasets, respectively). The PLS models constructed on the first derivative spectra required fewer latent variables, yielding variable results in accuracy (RMSECV of 0.23 and 0.06 g/100 g solvent, respectively). Corresponding isothermal local models constructed indicated improved model performance that required fewer latent variables in the absence of temperature effects (RMSECV of 0.01 and 0.04 g/100 g solvent, respectively). Temperature correction of the spectral data via loading space standardization (LSS) enabled the construction of global models using the same number of latent variables as the corresponding local model, which exhibited comparable model performance (RMSECV of 0.06 and 0.04 g/100 g solvent, respectively). The additional chemometric effort required for LSS is justified if prediction of solute concentration is required for in situ monitoring and control of cooling crystallization with an accuracy and precision approaching that attainable using an isothermal local model. However, the model performance with minimal preprocessing may be sufficient, for example, in the early phase development of a cooling crystallization process, where high accuracy is not always required. UV and IR spectrometries were used to determine solubility diagrams for LAA in MeCN/H2O (80:20 w/w), which were found to be accurate compared to those obtained using the traditional techniques of transmittance and gravimetric measurement. For both UV and IR spectrometries, solubility values obtained from models with LSS temperature correction were in better agreement with those determined gravimetrically. In this first example of the application of LSS to UV spectra, significant improvement in the predicted solute concentration is achieved with the additional chemometric effort. There is no extra experimental burden associated with the use of LSS if a structured approach is employed to acquire calibration data that account for both temperature and concentration

    Intermolecular Fermi resonance

    No full text
    The exceptionally broad feature at similar to3025 cm(-1) observed in the Raman spectrum of chloroform dissolved in liquid sulfur dioxide is shown to be due to the triple combination mode, nu(1)+nu(2)+nu(3), of sulfur dioxide gaining intensity by mixing with the fundamental C-H stretching mode of chloroform. Investigation of a number of similar systems shows that this broadening is unique to this system and is certainly not heterogeneous broadening due to C-H hydrogen bonding to SO2. This therefore is probably the first observation of the phenomenon of intermolecular Fermi resonance, between molecularly distinct species. (C) 2003 American Institute of Physics
    corecore