886 research outputs found

    24 \textmu m length spin relaxation length in boron nitride encapsulated bilayer graphene

    Get PDF
    We have performed spin and charge transport measurements in dual gated high mobility bilayer graphene encapsulated in hexagonal boron nitride. Our results show spin relaxation lengths λs\lambda_s up to 13~\textmu m at room temperature with relaxation times τs\tau_s of 2.5~ns. At 4~K, the diffusion coefficient rises up to 0.52~m2^2/s, a value 5 times higher than the best achieved for graphene spin valves up to date. As a consequence, λs\lambda_s rises up to 24~\textmu m with τs\tau_s as high as 2.9~ns. We characterized 3 different samples and observed that the spin relaxation times increase with the device length. We explain our results using a model that accounts for the spin relaxation induced by the non-encapsulated outer regions.Comment: 5 pages and 4 figure

    Using complex behavior to understand brain mechanisms in health and disease

    Get PDF
    At this point in the history of the science of behavior, a focus on neuroscience-based outcomes has become dominant in neuropsychiatric fields at the preclinical and clinical levels of analysis. The notion that behavior is caused by brain function, and that changing brain function can alter behavior, has fueled this push to understand these neurobiological mechanisms. Within this conceptual framework and the funding to incentivize its adoption, the neuroscience field grew rapidly with the goal to understand the relation between the brain and behavior. As such, a reductionist perspective emerged whereby neural manipulations of increasing sophistication became required for assessing the necessity and sufficiency of a particular brain mechanism’s role in behavior (Krakauer et al., 2017). Yet, despite the amazing advances in neuroscience, some, such as the former director of the National Institute of Mental Health, Dr. Thomas Insel, have noted the lack of progress in treatment outcomes for mental illness following the shift in funding from behavioral research to genetics and neuroscience research (Barry, 2022)

    Panoramic optical and near-infrared SETI instrument: prototype design and testing

    Get PDF
    The Pulsed All-sky Near-infrared Optical Search for ExtraTerrestrial Intelligence (PANOSETI) is an instrument program that aims to search for fast transient signals (nano-second to seconds) of artificial or astrophysical origin. The PANOSETI instrument objective is to sample the entire observable sky during all observable time at optical and near-infrared wavelengths over 300 - 1650 nm1^1. The PANOSETI instrument is designed with a number of modular telescope units using Fresnel lenses (∼\sim0.5m) arranged on two geodesic domes in order to maximize sky coverage2^2. We present the prototype design and tests of these modular Fresnel telescope units. This consists of the design of mechanical components such as the lens mounting and module frame. One of the most important goals of the modules is to maintain the characteristics of the Fresnel lens under a variety of operating conditions. We discuss how we account for a range of operating temperatures, humidity, and module orientations in our design in order to minimize undesirable changes to our focal length or angular resolution.Comment: 12 pages, 8 figures, 1 tabl

    Intravascular ultrasound imaging: In vitro validation and pathologic correlation

    Get PDF
    AbstractIntravascuiar ultrasound imaging is a new method in which high resolution images of the arterial wall are obtained with use of a catheter placed within an artery. An in vitro Plexiglas well model was used to validate measurements of the luminal area, and an excellent correlation was obtained. One hundred thirty segments of fresh peripheral arteries underwent ultrasound imaging and the findings were compared with the corresponding histopathologic sections. luminal areas determined with ultrasound imaging correlated well with those calculated from microscopic slides (r = 0.98).Three patterns were identified on the ultrasound images: 1) distinct interface between media and adventitia, 2) indistinct interface between media and adventitia but different echo density layers, and 3) diffuse homogeneous appearance. The types of patterns depended on the relative composition of the and adventitia. Calcification of intimal plaque obscured underlying structures. Atherosclerotic plaque was readily visualized but could not always be differentiated from the underlying media

    Driven dynamics and rotary echo of a qubit tunably coupled to a harmonic oscillator

    Get PDF
    We have investigated the driven dynamics of a superconducting flux qubit that is tunably coupled to a microwave resonator. We find that the qubit experiences an oscillating field mediated by off-resonant driving of the resonator, leading to strong modifications of the qubit Rabi frequency. This opens an additional noise channel, and we find that low-frequency noise in the coupling parameter causes a reduction of the coherence time during driven evolution. The noise can be mitigated with the rotary-echo pulse sequence, which, for driven systems, is analogous to the Hahn-echo sequence

    Human and great ape red blood cells differ in plasmalogen levels and composition

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Plasmalogens are ether phospholipids required for normal mammalian developmental, physiological, and cognitive functions. They have been proposed to act as membrane antioxidants and reservoirs of polyunsaturated fatty acids as well as influence intracellular signaling and membrane dynamics. Plasmalogens are particularly enriched in cells and tissues of the human nervous, immune, and cardiovascular systems. Humans with severely reduced plasmalogen levels have reduced life spans, abnormal neurological development, skeletal dysplasia, impaired respiration, and cataracts. Plasmalogen deficiency is also found in the brain tissue of individuals with Alzheimer disease.</p> <p>Results</p> <p>In a human and great ape cohort, we measured the red blood cell (RBC) levels of the most abundant types of plasmalogens. Total RBC plasmalogen levels were lower in humans than bonobos, chimpanzees, and gorillas, but higher than orangutans. There were especially pronounced cross-species differences in the levels of plasmalogens with a C16:0 moiety at the <it>sn</it>-1 position. Humans on Western or vegan diets had comparable total RBC plasmalogen levels, but the latter group showed moderately higher levels of plasmalogens with a C18:1 moiety at the <it>sn</it>-1 position. We did not find robust sex-specific differences in human or chimpanzee RBC plasmalogen levels or composition. Furthermore, human and great ape skin fibroblasts showed only modest differences in peroxisomal plasmalogen biosynthetic activity. Human and chimpanzee microarray data indicated that genes involved in plasmalogen biosynthesis show cross-species differential expression in multiple tissues.</p> <p>Conclusion</p> <p>We propose that the observed differences in human and great ape RBC plasmalogens are primarily caused by their rates of biosynthesis and/or turnover. Gene expression data raise the possibility that other human and great ape cells and tissues differ in plasmalogen levels. Based on the phenotypes of humans and rodents with plasmalogen disorders, we propose that cross-species differences in tissue plasmalogen levels could influence organ functions and processes ranging from cognition to reproduction to aging.</p

    Action selection in early stages of psychosis: an active inference approach

    Get PDF
    BACKGROUND: To interact successfully with their environment, humans need to build a model to make sense of noisy and ambiguous inputs. An inaccurate model, as suggested to be the case for people with psychosis, disturbs optimal action selection. Recent computational models, such as active inference, have emphasized the importance of action selection, treating it as a key part of the inferential process. Based on an active inference framework, we sought to evaluate previous knowledge and belief precision in an action-based task, given that alterations in these parameters have been linked to the development of psychotic symptoms. We further sought to determine whether task performance and modelling parameters would be suitable for classification of patients and controls. METHODS: Twenty-three individuals with an at-risk mental state, 26 patients with first-episode psychosis and 31 controls completed a probabilistic task in which action choice (go/no-go) was dissociated from outcome valence (gain or loss). We evaluated group differences in performance and active inference model parameters and performed receiver operating characteristic (ROC) analyses to assess group classification. RESULTS: We found reduced overall performance in patients with psychosis. Active inference modelling revealed that patients showed increased forgetting, reduced confidence in policy selection and less optimal general choice behaviour, with poorer action-state associations. Importantly, ROC analysis showed fair-to-good classification performance for all groups, when combining modelling parameters and performance measures. LIMITATIONS: The sample size is moderate. CONCLUSION: Active inference modelling of this task provides further explanation for dysfunctional mechanisms underlying decision-making in psychosis and may be relevant for future research on the development of biomarkers for early identification of psychosis

    Identification of differences in human and great ape phytanic acid metabolism that could influence gene expression profiles and physiological functions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It has been proposed that anatomical differences in human and great ape guts arose in response to species-specific diets and energy demands. To investigate functional genomic consequences of these differences, we compared their physiological levels of phytanic acid, a branched chain fatty acid that can be derived from the microbial degradation of chlorophyll in ruminant guts. Humans who accumulate large stores of phytanic acid commonly develop cerebellar ataxia, peripheral polyneuropathy, and retinitis pigmentosa in addition to other medical conditions. Furthermore, phytanic acid is an activator of the PPAR-alpha transcription factor that influences the expression of genes relevant to lipid metabolism.</p> <p>Results</p> <p>Despite their trace dietary phytanic acid intake, all great ape species had elevated red blood cell (RBC) phytanic acid levels relative to humans on diverse diets. Unlike humans, chimpanzees showed sexual dimorphism in RBC phytanic acid levels, which were higher in males relative to females. Cultured skin fibroblasts from all species had a robust capacity to degrade phytanic acid. We provide indirect evidence that great apes, in contrast to humans, derive significant amounts of phytanic acid from the hindgut fermentation of plant materials. This would represent a novel reduction of metabolic activity in humans relative to the great apes.</p> <p>Conclusion</p> <p>We identified differences in the physiological levels of phytanic acid in humans and great apes and propose this is causally related to their gut anatomies and microbiomes. Phytanic acid levels could contribute to cross-species and sex-specific differences in human and great ape transcriptomes, especially those related to lipid metabolism. Based on the medical conditions caused by phytanic acid accumulation, we suggest that differences in phytanic acid metabolism could influence the functions of human and great ape nervous, cardiovascular, and skeletal systems.</p

    Rare Complications of Cervical Spine Surgery: Pseudomeningocoele.

    Get PDF
    STUDY DESIGN: This study was a retrospective, multicenter cohort study. OBJECTIVES: Rare complications of cervical spine surgery are inherently difficult to investigate. Pseudomeningocoele (PMC), an abnormal collection of cerebrospinal fluid that communicates with the subarachnoid space, is one such complication. In order to evaluate and better understand the incidence, presentation, treatment, and outcome of PMC following cervical spine surgery, we conducted a multicenter study to pool our collective experience. METHODS: This study was a retrospective, multicenter cohort study of patients who underwent cervical spine surgery at any level(s) from C2 to C7, inclusive; were over 18 years of age; and experienced a postoperative PMC. RESULTS: Thirteen patients (0.08%) developed a postoperative PMC, 6 (46.2%) of whom were female. They had an average age of 48.2 years and stayed in hospital a mean of 11.2 days. Three patients were current smokers, 3 previous smokers, 5 had never smoked, and 2 had unknown smoking status. The majority, 10 (76.9%), were associated with posterior surgery, whereas 3 (23.1%) occurred after an anterior procedure. Myelopathy was the most common indication for operations that were complicated by PMC (46%). Seven patients (53%) required a surgical procedure to address the PMC, whereas the remaining 6 were treated conservatively. All PMCs ultimately resolved or were successfully treated with no residual effects. CONCLUSIONS: PMC is a rare complication of cervical surgery with an incidence of less than 0.1%. They prolong hospital stay. PMCs occurred more frequently in association with posterior approaches. Approximately half of PMCs required surgery and all ultimately resolved without residual neurologic or other long-term effects
    • …
    corecore