41 research outputs found

    trans-Bis(1,1,1,5,5,5-hexa­fluoro­pentane-2,4-dionato-κ2 O,O′)bis­(4-methyl-1,2,3-selenadiazole-κN 3)copper(II)

    Get PDF
    In the title compound, [Cu(C5HF6O2)2(C3H4N2Se)2], the CuII atom (site symmetry ) is coordinated by two O,O′-bidentate 1,1,1,5,5,5-hexa­fluoro-2,4-penta­nedione (hp) ligands and two 4-methyl-1,2,3-selenadiazole mol­ecules, resulting in a slightly distorted trans-CuN2O4 octa­hedral geometry in which the cis angles deviate by less than 3° from 90°. The selenadiazole plane is canted at 73.13 (17)° to the square plane defined by the penta­nedionate O atoms. The F atoms of one of the hp ligands are disordered over two sets of sites in a 0.66 (3):0.34 (3) ratio. There are no significant inter­molecular inter­actions in the crystal

    Structures of tetrasilylmethane derivatives C(SiXMe2)4 (X = H, F, Cl, Br) in the gas phase and their dynamic structures in solution.

    Get PDF
    The structures of the molecules C(SiXMe2)4 (X = H, F, Cl, Br) have been determined by gas electron diffraction (GED). Ab initio calculations revealed nine potential minima for each species, with significant ranges of energies. For the H, F, Cl, and Br derivatives nine, seven, two, and two conformers were modelled, respectively, as they were quantum-chemically predicted to be present in measurable quantities. Variable-temperature 1H and 29Si solution-phase NMR studies and, where applicable, 13C NMR, 1H/29Si NMR shift-correlation, and 1H NMR saturation-transfer experiments are reported for C(SiXMe2)4 (X = H, Cl, Br, and also I). At low temperature in solution two conformers (one C1-symmetric and one C2-symmetric) are observed for each of C(SiXMe2)4 (X = Cl, Br, I), in agreement with the isolated molecule ab initiocalculations carried out as part of this work for X = Cl, Br. C(SiHMe2)4 is present as a single C1-symmetric conformer in solution at the temperatures at which the NMR experiments were performed

    Study on Gas Permeation and CO2 Separation through Ionic Liquid Based Membranes with Siloxane-Functionalized Cations

    Get PDF
    This work explores ionic liquid-based membranes with siloxane functionalized cations using two different approaches: supported ionic liquid membranes (SILMs) and poly(ionic liquid)–ionic liquid (PIL–IL) composite membranes. Their CO2, CH4, and N2 permeation properties were measured at T = 293 K with a trans-membrane pressure differential of 100 kPa. The thermophysical properties of the synthesized siloxane-functionalized ILs, namely viscosity and density (data in the Supporting Information), were also determined. Contrary to what was expected, the gas permeation results show that the SILMs containing siloxane-functionalized cations have CO2 permeabilities that are lower than those of their analogues without the siloxane functionality. The addition of siloxane-based ILs into PILs increases both CO2 permeability and CO2/N2 permselectivity, although it does not significantly change the CO2/CH4 permselectivity. The prepared membranes present very diverse CO2 permeabilities, between 57 and 568 Barrer, while they show permselectivities varying from 16.8 to 36.8 for CO2/N2 and from 9.8 to 11.5 for CO2/CH4. As observed for other ILs, superior CO2 separation performances were obtained when the IL containing [C(CN)3]− is used compared to that having the [NTf2]− anion

    Internalization of metal-organic framework nanoparticles in human vascular cells: Implications for cardiovascular disease therapy

    Get PDF
    Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide. Alteration of endothelial cells and the underlying vasculature plays a central role in the pathogenesis of various CVDs. The application of nanoscale materials such as nanoparticles in biomedicine has opened new horizons in the treatment of CVDs. We have previously shown that the iron metal-organic framework nanoparticle, Materials Institut Lavoisier-89 (nanoMIL-89) represents a viable vehicle for future drug delivery of pulmonary arterial hypertension. In this study, we have assessed the cellular uptake of nanoMIL-89 in pulmonary artery endothelial and smooth muscle cells using microscopy imaging techniques. We also tested the cellular responses to nanoMIL-89 using molecular and cellular assays. Microscopic images showed cellular internalization of nanoMIL-89, packaging into endocytic vesicles, and passing to daughter cells during mitosis. Moreover, nanoMIL-89 showed anti-inflammatory activity without any significant cytotoxicity. Our results indicate that nanoMIL-89 formulation may offer promising therapeutic opportunities and set forth a new prototype for drug delivery not only in CVDs, but also for other diseases yet incurable, such as diabetes and cancer.- The UREP grant [22-140-3-023] from Qatar National Research Fund (QNRF), a member of Qatar Foundation. - The Pickford Award from the British Pharmacological Society (awarded to NAM). - PDRA grants [PDRA3-0324-17001 and PDRA4-0129-18003] from QNRF

    The gas-phase structure of octaphenyloctasilsesquioxane Si<sub>8</sub>O<sub>12</sub>Ph<sub>8</sub> and the crystal structures of Si<sub>8</sub>O<sub>12</sub>(<em>p</em>-tolyl)<sub>8</sub> and Si<sub>8</sub>O<sub>12</sub>(<em>p</em>-ClCH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>)<sub>8</sub>

    Get PDF
    The equilibrium molecular structure of octaphenyloctasilsesquioxane Si8O12Ph8 in the gas phase has been determined by electron diffraction. It was found to have D4 point-group symmetry, with Si–O bond lengths of 1.634(15)–1.645(19) Å, and a narrow range [147.5(45)–149.8(24)°] of Si–O–Si angles. The structures of Si8O12(p-tolyl)8 and Si8O12(p-ClCH2C6H4)8 have been determined by X-ray diffraction and are found to have Si8O12 cages significantly distorted from the symmetry found for Si8O12Ph8 in the gas phase. Thus, Si–O–Si angles range between 144.2(2)–151.64(16)° for Si8O12(p-tolyl)8, and between 138.8(2)–164.2(2)° for Si8O12(p-ClCH2C6H4)8. These three structures show how much a Si8O12 cage may be distorted away from an ideal structure, free from intermolecular forces, by packing forces in a crystalline lattice.</p

    A New NO-Releasing Nanoformulation for the Treatment of Pulmonary Arterial Hypertension

    Get PDF
    Copyright The Author(s) 2016. This article is published with open access at Springerlink.com. Open Access - This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were madePulmonary arterial hypertension (PAH) is a chronic and progressive disease which continues to carry an unacceptably high mortality and morbidity. The nitric oxide (NO) pathway has been implicated in the pathophysiology and progression of the disease. Its extremely short half-life and systemic effects have hampered the clinical use of NO in PAH. In an attempt to circumvent these major limitations, we have developed a new NO-nanomedicine formulation. The formulation was based on hydrogel-like polymeric composite NO-releasing nanoparticles (NO-RP). The kinetics of NO release from the NO-RP showed a peak at about 120 min followed by a sustained release for over 8 h. The NO-RP did not affect the viability or inflammation responses of endothelial cells. The NO-RP produced concentration-dependent relaxations of pulmonary arteries in mice with PAH induced by hypoxia. In conclusion, NO-RP drugs could considerably enhance the therapeutic potential of NO therapy for PAH.Peer reviewedFinal Published versio
    corecore