155 research outputs found

    An Advanced, Three-Dimensional Plotting Library for Astronomy

    Get PDF
    We present a new, three-dimensional (3D) plotting library with advanced features, and support for standard and enhanced display devices. The library - S2PLOT - is written in C and can be used by C, C++ and FORTRAN programs on GNU/Linux and Apple/OSX systems. S2PLOT draws objects in a 3D (x,y,z) Cartesian space and the user interactively controls how this space is rendered at run time. With a PGPLOT inspired interface, S2PLOT provides astronomers with elegant techniques for displaying and exploring 3D data sets directly from their program code, and the potential to use stereoscopic and dome display devices. The S2PLOT architecture supports dynamic geometry and can be used to plot time-evolving data sets, such as might be produced by simulation codes. In this paper, we introduce S2PLOT to the astronomical community, describe its potential applications, and present some example uses of the library.Comment: 12 pages, 10 eps figures (higher resolution versions available from http://astronomy.swin.edu.au/s2plot/paperfigures). The S2PLOT library is available for download from http://astronomy.swin.edu.au/s2plo

    Future Directions in Astronomy Visualisation

    Full text link
    Despite the large budgets spent annually on astronomical research equipment such as telescopes, instruments and supercomputers, the general trend is to analyse and view the resulting datasets using small, two-dimensional displays. We report here on alternative advanced image displays, with an emphasis on displays that we have constructed, including stereoscopic projection, multiple projector tiled displays and a digital dome. These displays can provide astronomers with new ways of exploring the terabyte and petabyte datasets that are now regularly being produced from all-sky surveys, high-resolution computer simulations, and Virtual Observatory projects. We also present a summary of the Advanced Image Displays for Astronomy (AIDA) survey which we conducted from March-May 2005, in order to raise some issues pertitent to the current and future level of use of advanced image displays.Comment: 13 pages, 2 figures, accepted for publication in PAS

    Möbius-strip-like columnar functional connections are revealed in somato-sensory receptive field centroids

    Get PDF
    Receptive fields of neurons in the forelimb region of areas 3b and 1 of primary somatosensory cortex, in cats and monkeys, were mapped using extracellular recordings obtained sequentially from nearly radial penetrations. Locations of the field centroids indicated the presence of a functional system, in which cortical homotypic representations of the limb surfaces are entwined in three-dimensional Mobius-strip-like patterns of synaptic connections. Boundaries of somatosensory receptive field in nested groups irregularly overlie the centroid order, and are interpreted as arising from the superposition of learned connections upon the embryonic order. Since the theory of embryonic synaptic self-organisation used to model these results was devised and earlier used to explain findings in primary visual cortex, the present findings suggest the theory may be of general application throughout cortex, and may reveal a modular functional synaptic system, which, only in some parts of the cortex, and in some species, is manifest as anatomical ordering into columns

    The CO Molecular Outflows of IRAS 16293-2422 Probed by the Submillimeter Array

    Full text link
    We have mapped the proto-binary source IRAS 16293-2422 in CO 2-1, 13CO 2-1, and CO 3-2 with the Submillimeter Array (SMA). The maps with resolution of 1".5-5" reveal a single small scale (~3000 AU) bipolar molecular outflow along the east-west direction. We found that the blueshifted emission of this small scale outflow mainly extends to the east and the redshifted emission to the west from the position of IRAS 16293A. A comparison with the morphology of the large scale outflows previously observed by single-dish telescopes at millimeter wavelengths suggests that the small scale outflow may be the inner part of the large scale (~15000 AU) E-W outflow. On the other hand, there is no clear counterpart of the large scale NE-SW outflow in our SMA maps. Comparing analytical models to the data suggests that the morphology and kinematics of the small scale outflow can be explained by a wide-angle wind with an inclination angle of ~30-40 degrees with respect to the plane of the sky. The high resolution CO maps show that there are two compact, bright spots in the blueshifted velocity range. An LVG analysis shows that the one located 1" to the east of source A is extremely dense, n(H_2)~10^7 cm^-3, and warm, T_kin >55 K. The other one located 1" southeast of source B has a higher temperature of T_kin >65 K but slightly lower density of n(H_2)~10^6 cm^-3. It is likely that these bright spots are associated with the hot core-like emission observed toward IRAS 16293. Since both two bright spots are blueshifted from the systemic velocity and are offset from the protostellar positions, they are likely formed by shocks.Comment: 27 pages, 8 figures, accepted for publication in ApJ, minor typos correcte

    The Spitzer Gould Belt Survey of Large Nearby Interstellar Clouds: Discovery of A Dense Embedded Cluster in the Serpens-Aquila Rift

    Get PDF
    We report the discovery of a nearby, embedded cluster of young stellar objects, associated filamentary infrared dark cloud, and 4.5 mu m shock emission knots from outflows detected in Spitzer IRAC mid-infrared imaging of the Serpens-Aquila Rift obtained as part of the Spitzer Gould Belt Legacy Survey. We also present radial velocity measurements of the region from molecular line observations obtained with the Submillimeter Array (SMA) that suggest the cluster is comoving with the Serpens Main embedded cluster to the north. We therefore assign it 3 degrees the same distance, 260 pc. The core of the new cluster, which we call Serpens South, is composed of an unusually large fraction of protostars (77%) at high mean surface density (> 430 pc(-2)) and short median nearest neighbor spacing (3700 AU). We perform basic cluster structure characterization using nearest neighbor surface density mapping of the YSOs and compare our findings to other known clusters with equivalent analyses available in the literature.Astronom

    A 250 plastome phylogeny of the grass family (Poaceae): topological support under different data partitions

    Get PDF
    The systematics of grasses has advanced through applications of plastome phylogenomics, although studies have been largely limited to subfamilies or other subgroups of Poaceae. Here we present a plastome phylogenomic analysis of 250 complete plastomes (179 genera) sampled from 44 of the 52 tribes of Poaceae. Plastome sequences were determined from high throughput sequencing libraries and the assemblies represent over 28.7 Mbases of sequence data. Phylogenetic signal was characterized in 14 partitions, including (1) complete plastomes; (2) protein coding regions; (3) noncoding regions; and (4) three loci commonly used in single and multi-gene studies of grasses. Each of the four main partitions was further refined, alternatively including or excluding positively selected codons and also the gaps introduced by the alignment. All 76 protein coding plastome loci were found to be predominantly under purifying selection, but specific codons were found to be under positive selection in 65 loci. The loci that have been widely used in multi-gene phylogenetic studies had among the highest proportions of positively selected codons, suggesting caution in the interpretation of these earlier results. Plastome phylogenomic analyses confirmed the backbone topology for Poaceae with maximum bootstrap support (BP). Among the 14 analyses, 82 clades out of 309 resolved were maximally supported in all trees. Analyses of newly sequenced plastomes were in agreement with current classifications. Five of seven partitions in which alignment gaps were removed retrieved Panicoideae as sister to the remaining PACMAD subfamilies. Alternative topologies were recovered in trees from partitions that included alignment gaps. This suggests that ambiguities in aligning these uncertain regions might introduce a false signal. Resolution of these and other critical branch points in the phylogeny of Poaceae will help to better understand the selective forces that drove the radiation of the BOP and PACMAD clades comprising more than 99.9% of grass diversity

    AMI Large Array radio continuum observations of Spitzer c2d small clouds and cores

    Full text link
    We perform deep 1.8 cm radio continuum imaging towards thirteen protostellar regions selected from the Spitzer c2d small clouds and cores programme at high resolution (25") in order to detect and quantify the cm-wave emission from deeply embedded young protostars. Within these regions we detect fifteen compact radio sources which we identify as radio protostars including two probable new detections. The sample is in general of low bolometric luminosity and contains several of the newly detected VeLLO sources. We determine the 1.8 cm radio luminosity to bolometric luminosity correlation, L_rad -L_bol, for the sample and discuss the nature of the radio emission in terms of the available sources of ionized gas. We also investigate the L_rad-L_IR correlation and suggest that radio flux density may be used as a proxy for the internal luminosity of low luminosity protostars.Comment: submitted MNRA

    AMI observations of Lynds Dark Nebulae: further evidence for anomalous cm-wave emission

    Get PDF
    Observations at 14.2 to 17.9 GHz made with the AMI Small Array towards fourteen Lynds Dark Nebulae with a resolution of 2' are reported. These sources are selected from the SCUBA observations of Visser et al. (2001) as small angular diameter clouds well matched to the synthesized beam of the AMI Small Array. Comparison of the AMI observations with radio observations at lower frequencies with matched uv-plane coverage is made, in order to search for any anomalous excess emission which can be attributed to spinning dust. Possible emission from spinning dust is identified as a source within a 2' radius of the Scuba position of the Lynds dark nebula, exhibiting an excess with respect to lower frequency radio emission. We find five sources which show a possible spinning dust component in their spectra. These sources have rising spectral indices in the frequency range 14.2--17.9 GHz. Of these five one has already been reported, L1111, we report one new definite detection, L675, and three new probable detections (L944, L1103 and L1246). The relative certainty of these detections is assessed on the basis of three criteria: the extent of the emission, the coincidence of the emission with the Scuba position and the likelihood of alternative explanations for the excess. Extended microwave emission makes the likelihood of the anomalous emission arising as a consequence of a radio counterpart to a protostar or a proto-planetary disk unlikely. We use a 2' radius in order to be consistent with the IRAS identifications of dark nebulae (Parker 1988), and our third criterion is used in the case of L1103 where a high flux density at 850 microns relative to the FIR data suggests a more complicated emission spectrum.Comment: submitted MNRA
    • 

    corecore