51 research outputs found

    Population genetic variation in gene expression is associated with phenotypic variation in Saccharomyces cerevisiae

    Get PDF
    BACKGROUND: The relationship between genetic variation in gene expression and phenotypic variation observable in nature is not well understood. Identifying how many phenotypes are associated with differences in gene expression and how many gene-expression differences are associated with a phenotype is important to understanding the molecular basis and evolution of complex traits. RESULTS: We compared levels of gene expression among nine natural isolates of Saccharomyces cerevisiae grown either in the presence or absence of copper sulfate. Of the nine strains, two show a reduced growth rate and two others are rust colored in the presence of copper sulfate. We identified 633 genes that show significant differences in expression among strains. Of these genes, 20 were correlated with resistance to copper sulfate and 24 were correlated with rust coloration. The function of these genes in combination with their expression pattern suggests the presence of both correlative and causative expression differences. But the majority of differentially expressed genes were not correlated with either phenotype and showed the same expression pattern both in the presence and absence of copper sulfate. To determine whether these expression differences may contribute to phenotypic variation under other environmental conditions, we examined one phenotype, freeze tolerance, predicted by the differential expression of the aquaporin gene AQY2. We found freeze tolerance is associated with the expression of AQY2. CONCLUSIONS: Gene expression differences provide substantial insight into the molecular basis of naturally occurring traits and can be used to predict environment dependent phenotypic variation

    Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies

    Get PDF
    Expansion microscopy (ExM) enables imaging of preserved specimens with nanoscale precision on diffraction-limited instead of specialized super-resolution microscopes. ExM works by physically separating fluorescent probes after anchoring them to a swellable gel. The first ExM method did not result in the retention of native proteins in the gel and relied on custom-made reagents that are not widely available. Here we describe protein retention ExM (proExM), a variant of ExM in which proteins are anchored to the swellable gel, allowing the use of conventional fluorescently labeled antibodies and streptavidin, and fluorescent proteins. We validated and demonstrated the utility of proExM for multicolor super-resolution (~70 nm) imaging of cells and mammalian tissues on conventional microscopes.United States. National Institutes of Health (1R01GM104948)United States. National Institutes of Health (1DP1NS087724)United States. National Institutes of Health ( NIH 1R01EY023173)United States. National Institutes of Health (1U01MH106011

    Mutator dynamics in sexual and asexual experimental populations of yeast

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In asexual populations, mutators may be expected to hitchhike with associated beneficial mutations. In sexual populations, recombination is predicted to erode such associations, inhibiting mutator hitchhiking. To investigate the effect of recombination on mutators experimentally, we compared the frequency dynamics of a mutator allele (<it>msh2</it>Δ) in sexual and asexual populations of <it>Saccharomyces cerevisiae</it>.</p> <p>Results</p> <p>Mutator strains increased in frequency at the expense of wild-type strains in all asexual diploid populations, with some approaching fixation in 150 generations of propagation. Over the same period of time, mutators declined toward loss in all corresponding sexual diploid populations as well as in haploid populations propagated asexually.</p> <p>Conclusions</p> <p>We report the first experimental investigation of mutator dynamics in sexual populations. We show that a strong mutator quickly declines in sexual populations while hitchhiking to high frequency in asexual diploid populations, as predicted by theory. We also show that the <it>msh2Δ </it>mutator has a high and immediate realized cost that is alone sufficient to explain its decline in sexual populations. We postulate that this cost is indirect; namely, that it is due to a very high rate of recessive lethal or strongly deleterious mutation. However, we cannot rule out the possibility that <it>msh2</it>Δ also has unknown directly deleterious effects on fitness, and that these effects may differ between haploid asexual and sexual populations. Despite these reservations, our results prompt us to speculate that the short-term cost of highly deleterious recessive mutations can be as important as recombination in preventing mutator hitchhiking in sexual populations.</p

    Spontaneously Arising mutL Mutators in Evolving Escherichia coli Populations Are the Result of Changes in Repeat Length

    No full text
    Over the course of thousands of generations of growth in a glucose-limited environment, 3 of 12 experimental populations of Escherichia coli spontaneously and independently evolved greatly increased mutation rates. In two of the populations, the mutations responsible for this increased mutation rate lie in the same region of the mismatch repair gene mutL. In this region, a 6-bp repeat is present in three copies in the gene of the wild-type ancestor of the experimental populations but is present in four copies in one of the experimental populations and two copies in the other. These in-frame mutations either add or delete the amino acid sequence LA in the MutL protein. We determined that the replacement of the wild-type sequence with either of these mutations was sufficient to increase the mutation rate of the wild-type strain to a level comparable to that of the mutator strains. Complementation of strains bearing the mutator mutations with wild-type copies of either mutL or the mismatch repair gene uvrD rescued the wild-type mutation rate. The position of the mutator mutations—in the region of MutL known as the ATP lid—suggests a possible deficiency in MutL's ATPase activity as the cause of the mutator phenotype. The similarity of the two mutator mutations (despite the independent evolutionary histories of the populations that gave rise to them) leads to a discussion of the potential adaptive role of DNA repeats

    Evolvability

    Get PDF

    Effects of autosomal inversions on meiotic exchange in distal and proximal regions of the X chromosome in a natural population of<i>Drosophila melanogaster</i>

    Full text link
    SummaryWe have investigated the interchromosomal effect of the naturally-occurring paracentric inversionsIn(2L)tandIn(3R)Pon meiotic recombination in two regions of the X chromosome inDrosophila melanogaster. Previous authors have suggested that the rate of recombination at the tip of the X chromosome may be substantially higher in some natural populations than values measured in the laboratory, due to the interchromosomal effect of heterozygous autosomal inversions. This suggestion was motivated by observations that transposable elements are not as common at the tip of the X chromosome as predicted by recent research relating reduced meiotic exchange to increased element abundance inD. melanogaster. We examined the effects of heterozygousIn(2L)tandIn(3R)Pon recombination at both the tip and base of the X chromosome on a background of isogenic major chromosomes from a natural population. Both inversions substantially increased the rate of recombination at the base; neither one affected recombination at the tip. The results suggest that the presence of inversions in the study population does not elevate rates of crossing over at the tip of the X chromosome. The relevance of these results to ideas relating transposable element abundance to recombination rates is discussed.</jats:p

    Data from: Contrasting dynamics of a mutator allele in asexual populations of differing size

    No full text
    Mutators have been shown to hitchhike in asexual populations when the anticipated beneficial mutation supply rate of the mutator subpopulation, NU_b (for subpopulation of size N and beneficial mutation rate U_b) exceeds that of the wild-type subpopulation. Here, we examine the effect of total population size on mutator dynamics in asexual experimental populations of Saccharomyces cerevisiae. Although mutators quickly hitchhike to fixation in smaller populations, mutator fixation requires more and more time as population size increases; this observed delay in mutator hitchhiking is consistent with the expected effect of clonal interference. Interestingly, despite their higher beneficial mutation supply rate, mutators are supplanted by the wild type in very large populations. We postulate that this striking reversal in mutator dynamics is caused by an interaction between clonal interference, the fitness cost of the mutator allele, and infrequent large-effect beneficial mutations in our experimental populations. Our work thus identifies a potential set of circumstances under which mutator hitchhiking can be inhibited in natural asexual populations, despite recent theoretical predictions that such populations should have a net tendency to evolve ever-higher genomic mutation rates
    corecore