1,651 research outputs found

    vMCA: Memory Capacity Aggregation and Management in Cloud Environments

    Get PDF
    In cloud environments, the VMs within the computing nodes generate varying memory demand profiles. When memory utilization reaches its limits due to this, costly (virtual) disk accesses and/or VM migrations can occur. Since some nodes might have idle memory, some costly operations could be avoided by making the idle memory available to the nodes that need it. In view of this, new architectures have been introduced that provide hardware support for a shared global address space that, together with fast interconnects, can share resources across nodes. Thus, memory becomes a global resource. This paper presents a memory capacity aggregation mechanism for cloud environments called vMCA (Virtualized Memory Capacity Aggregation) based on Xen's Transcendent Memory (Tmem). vMCA distributes the system's total memory within a single node and globally across multiple nodes using a user-space process with high-level memory management policies. We evaluate vMCA using CloudSuite 3.0 on Linux and Xen. Our results demonstrate a peak running time improvement of 76.8% when aggregating memory, and of 37.5% when aggregating memory and implementing our policies.This research has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement number 610456 (Euroserver). The research was also supported by the Ministry of Economy and Competitiveness of Spain (TIN2012-34557 and TIN2015-65316), HiPEAC Network of Excellence (ICT-287759 and ICT-687698), the FI-DGR Grant Program (2016FI-B-00947) of the Government of Catalonia and the Severo Ochoa Program (SEV-2011-00067) of the Spanish Government.Peer ReviewedPostprint (author's final draft

    Low prevalence of fibrosis in thalassemia major assessed by late gadolinium enhancement cardiovascular magnetic resonance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Heart failure remains a major cause of mortality in thalassaemia major. The possible role of cardiac fibrosis in thalassemia major in the genesis of heart failure is not clear. It is also unclear whether cardiac fibrosis might arise as a result of heart failure.</p> <p>Methods</p> <p>We studied 45 patients with thalassaemia major who had a wide range of current cardiac iron loading and included patients with prior and current heart failure. Myocardial iron was measured using T2* cardiovascular magnetic resonance (CMR), and following this, late gadolinium enhancement (LGE) was used to determine the presence of macroscopic myocardial fibrosis.</p> <p>Results</p> <p>The median myocardial T2* in all patients was 22.6 ms (range 5.3-58.8 ms). Fibrosis was detected in only one patient, whose myocardial T2* was 20.1 ms and left ventricular ejection fraction 57%. No fibrosis was identified in 5 patients with a history of heart failure with full recovery, in 3 patients with current left ventricular dysfunction undergoing treatment, or in 18 patients with myocardial iron loading with cardiacT2* < 20 ms at the time of scan.</p> <p>Conclusion</p> <p>This study shows that macroscopic myocardial fibrosis is uncommon in thalassemia major across a broad spectrum of myocardial iron loading. Importantly, there was no macroscopic fibrosis in patients with current or prior heart failure, or in patients with myocardial iron loading without heart failure. Therefore if myocardial fibrosis indeed contributes to myocardial dysfunction in thalassemia, our data combined with the knowledge that the myocardial dysfunction of iron overload can be reversed, indicates that any such fibrosis would need to be both microscopic and reversible.</p

    Pacific sea surface temperature associations with southwestern United States summer rainfall and atmospheric circulation

    Get PDF
    Pacific sea surface temperatures (SSTs) are examined for their associations with (1) summer rainfall, and (2) the latitude location of the mid-tropospheric subtropical high pressure ridge (STR) in the southwestern United States during 1945 to 1986. Extreme northward (southward) displacements of STR are associated with wet (dry) summers over Arizona and an enhanced (weakened) gradient of SST off the California and Baja coasts. These tend to follow winters marked by positive (negative) phases of the PNA, Pacific/North America, teleconnection pattern. Recent decadal variations of Arizona summer rainfall (1950s wet; 1970s dry) appear similarly related to southwestern United States synoptic circulation and eastern Pacific SSTs

    TB20: Preliminary Tables of Some Chemical Elements in Seven Tree Species in Maine

    Get PDF
    These tables show the amount in grams for each of twelve elements for the complete tree and the merchantable bole, for seven tree species (red spruce, balsam fir, hemlock, white pine, white birch, red maple, aspen) in terms of five height classes and ten diameter classes.https://digitalcommons.library.umaine.edu/aes_techbulletin/1180/thumbnail.jp

    Main memory in HPC: do we need more, or could we live with less?

    Get PDF
    An important aspect of High-Performance Computing (HPC) system design is the choice of main memory capacity. This choice becomes increasingly important now that 3D-stacked memories are entering the market. Compared with conventional Dual In-line Memory Modules (DIMMs), 3D memory chiplets provide better performance and energy efficiency but lower memory capacities. Therefore, the adoption of 3D-stacked memories in the HPC domain depends on whether we can find use cases that require much less memory than is available now. This study analyzes the memory capacity requirements of important HPC benchmarks and applications. We find that the High-Performance Conjugate Gradients (HPCG) benchmark could be an important success story for 3D-stacked memories in HPC, but High-Performance Linpack (HPL) is likely to be constrained by 3D memory capacity. The study also emphasizes that the analysis of memory footprints of production HPC applications is complex and that it requires an understanding of application scalability and target category, i.e., whether the users target capability or capacity computing. The results show that most of the HPC applications under study have per-core memory footprints in the range of hundreds of megabytes, but we also detect applications and use cases that require gigabytes per core. Overall, the study identifies the HPC applications and use cases with memory footprints that could be provided by 3D-stacked memory chiplets, making a first step toward adoption of this novel technology in the HPC domain.This work was supported by the Collaboration Agreement between Samsung Electronics Co., Ltd. and BSC, Spanish Government through Severo Ochoa programme (SEV-2015-0493), by the Spanish Ministry of Science and Technology through TIN2015-65316-P project and by the Generalitat de Catalunya (contracts 2014-SGR-1051 and 2014-SGR-1272). This work has also received funding from the European Union’s Horizon 2020 research and innovation programme under ExaNoDe project (grant agreement No 671578). Darko Zivanovic holds the Severo Ochoa grant (SVP-2014-068501) of the Ministry of Economy and Competitiveness of Spain. The authors thank Harald Servat from BSC and Vladimir Marjanovi´c from High Performance Computing Center Stuttgart for their technical support.Postprint (published version

    Identification of New Lithic Clasts in Lunar Breccia 14305 by Micro-CT and Micro-XRF Analysis

    Get PDF
    From 1969 to 1972, Apollo astronauts collected 382 kg of rocks, soils, and core samples from six locations on the surface of the Moon. The samples were initially characterized, largely by binocular examination, in a custom-built facility at Johnson Space Center (JSC), and the samples have been curated at JSC ever since. Despite over 40 years of study, demand for samples remains high (~500 subsamples per year are allocated to scientists around the world), particularly for plutonic (e.g., anorthosites, norites, etc.) and evolved (e.g., granites, KREEP basalts) lithologies. The reason for the prolonged interest is that as new scientists and new techniques examine the samples, our understanding of how the Moon, Earth, and other inner Solar System bodies formed and evolved continues to grow. Scientists continually clamor for new samples to test their emerging hypotheses. Although all of the large Apollo samples that are igneous rocks have been classified, many Apollo samples are complex polymict breccias that have previously yielded large (cm-sized) igneous clasts. In this work we present the initial efforts to use the non-destructive techniques of micro-computed tomography (micro-CT) and micro x-ray fluorescence (micro-XRF) to identify large lithic clasts in Apollo 14 polymict breccia sample 14305. The sample in this study is 14305,483, a 150 g slab of regolith breccia 14305 measuring 10x6x2 cm (Figure 1a). The sample was scanned at the University of Texas High-Resolution X-ray CT Facility on an Xradia MicroXCT scanner. Two adjacent overlapping volumes were acquired at 49.2 micrometer resolution and stitched together, resulting in 1766 slices. Each volume was acquired at 100 kV accelerating voltage and 98 mA beam current with a 1 mm CaF2 filter, with 2161 views gathered over 360deg at 3 seconds acquisition time per view. Micro-XRF analyses were done at Washington University in St. Louis, Missouri on an EDAX Orbis PC micro-XRF instrument. Multiple scans were made at 40 kV accelerating voltage, 800 mA beam current, 30 m beam diameter, and a beam spacing of 30-120 micrometer. The micro-CT scan of 14305,483 (Figure 2) was able to identify several large lithic clasts (approx. 1 cm) within the interior of the slab. These clasts will be exposed by band-sawing or chipping of the slab, and their composition more fully characterized by subsequent micro-XRF analysis. In addition to lithic clasts, the micro-CT scans identified numerous mineral clasts, including many FeNi metal grains, as well as the prominent fractures within the slab. The micro-XRF analyses (Figure 1b,c) of the slab surfaces revealed the bulk chemical compositions (qualitative) of the different clast types observed. In particular, by looking at the ratios of major elements (e.g. Ca:Mg:Fe), differences among the many observed clast types are readily observed. Moreover, several clasts not apparent to the naked eye were revealed in the K:Al:Si ratio map. The scans are also able to identify small grains of Zr- and P-rich minerals (not shown), which could in turn yield important age dates for the samples

    Successful unrelated donor cord blood transplantation for Glanzmann’s thrombasthenia

    Full text link
    GT, a rare disorder of platelet function, can lead to life-threatening bleeding, particularly following the development of antiplatelet antibodies. Curative therapy includes HCT but previous reports are limited predominantly to matched siblings and have excluded CBT. Delayed or non-engraftment of platelets because of antiplatelet antibodies might be particularly concerning after CBT for GT. Here, we report two successful unrelated cord blood transplants for GT. Recurrent life-threatening bleeding was the primary indication for HCT, with one patient developing antiplatelet antibodies pre-HCT. Bleeding risks associated with delivery of the conditioning regimen and the toxicity that follows should be carefully considered, including tunneled central venous line catheter placement, inclusion of B cell-specific therapy to potentially decrease antiplatelet antibody production, and targeted busulfan dosing. This is the first report of successful unrelated cord blood HCT for GT and indicates that modifications to supportive care can improve the safety of this potentially curative therapy for patients with severe, life-threatening disease manifestations.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78580/1/j.1399-3046.2009.01251.x.pd

    American Society for Transplantation and Cellular Therapy series: #5-Management of Clostridioides difficile infection in hematopoietic cell transplant recipients

    Get PDF
    The Practice Guidelines Committee of the American Society for Transplantation and Cellular Therapy partnered with its Transplant Infectious Disease Special Interest Group to update its 2009 compendium-style infectious disease guidelines for hematopoietic cell transplantation (HCT). A completely new approach was taken with the goal of better serving clinical providers by publishing each standalone topic in the infectious disease series as a concise format of frequently asked questions (FAQ), tables, and figures. Adult and pediatric infectious disease and HCT content experts developed and then answered FAQs and finalized topics with harmonized recommendations that were made by assigning an A through E strength of recommendation paired with a level of supporting evidence graded I through III. This fifth guideline in the series focuses on Clostridioides difficile infection with FAQs that address the prevalence, incidence, clinical features, colonization versus infection, clinical complications, diagnostic considerations, pharmacological therapies for episodic or recurrent infection, and the roles of prophylactic antibiotics, probiotics, and fecal microbiota transplantation
    corecore