950 research outputs found

    A Portable MEMS Gravimeter for the Detection of the Earth Tides

    Get PDF
    Gravimeters are used for measuring the local gravitational acceleration. The use of current commercially available gravimeters, however, has been limited by their high cost and large size. In this study, a microelectromechanical system (MEMS) based relative gravimeter with an acceleration sensitivity of 8 ÎŒGall / √ (Hz) is demonstrated. The MEMS gravimeter, along with the custom interface electronics, is embedded on a battery powered portable platform. The portable platform enables continuous recording of the sensor response, while simultaneously measuring critical temperature and tilt parameters. To demonstrate the long-term stability of the system, the reported MEMS gravimeter platform was used to detect the Earth tides. In this paper, the first results from these measurements have been discussed

    Numeric taxonomy approaches for lytic evaluation of Salmonella specific bacteriophages

    Get PDF
    This study explored the lytic ability of bacteriophages as a future tool for reducing the Salmonella spp. loads in food animals. It investigated (a) the concept of a phage cocktail resulting from an exploratory analysis of the 13 phages which were examined, and (b) the possibility of using them in phage typing techniques for a broad range of serotypes. By using the conventional plaque assay method and cluster analysis, it was possible to select the 2/2, N5, 2a, 135KP and 120 phages, as potential elements of a cocktail as a means of efficiently eliminating the greatest number of several types of Salmonella. The 2/2 and N5 phages were also the most efficacious infective elements against the Typhimurium and Enteritidis serovars, respectively.info:eu-repo/semantics/publishedVersio

    Hadamard states from null infinity

    Full text link
    Free field theories on a four dimensional, globally hyperbolic spacetime, whose dynamics is ruled by a Green hyperbolic partial differential operator, can be quantized following the algebraic approach. It consists of a two-step procedure: In the first part one identifies the observables of the underlying physical system collecting them in a *-algebra which encodes their relational and structural properties. In the second step one must identify a quantum state, that is a positive, normalized linear functional on the *-algebra out of which one recovers the interpretation proper of quantum mechanical theories via the so-called Gelfand-Naimark-Segal theorem. In between the plethora of possible states, only few of them are considered physically acceptable and they are all characterized by the so-called Hadamard condition, a constraint on the singular structure of the associated two-point function. Goal of this paper is to outline a construction scheme for these states which can be applied whenever the underlying background possesses a null (conformal) boundary. We discuss in particular the examples of a real, massless conformally coupled scalar field and of linearized gravity on a globally hyperbolic and asymptotically flat spacetime.Comment: 23 pages, submitted to the Proceedings of the conference "Quantum Mathematical Physics", held in Regensburg from the 29th of September to the 02nd of October 201

    Two Mathematically Equivalent Versions of Maxwell's Equations

    Full text link
    This paper is a review of the canonical proper-time approach to relativistic mechanics and classical electrodynamics. The purpose is to provide a physically complete classical background for a new approach to relativistic quantum theory. Here, we first show that there are two versions of Maxwell's equations. The new version fixes the clock of the field source for all inertial observers. However now, the (natural definition of the effective) speed of light is no longer an invariant for all observers, but depends on the motion of the source. This approach allows us to account for radiation reaction without the Lorentz-Dirac equation, self-energy (divergence), advanced potentials or any assumptions about the structure of the source. The theory provides a new invariance group which, in general, is a nonlinear and nonlocal representation of the Lorentz group. This approach also provides a natural (and unique) definition of simultaneity for all observers. The corresponding particle theory is independent of particle number, noninvariant under time reversal (arrow of time), compatible with quantum mechanics and has a corresponding positive definite canonical Hamiltonian associated with the clock of the source. We also provide a brief review of our work on the foundational aspects of the corresponding relativistic quantum theory. Here, we show that the standard square-root and the Dirac equations are actually two distinct spin-12\tfrac{1}{2} particle equations.Comment: Appeared: Foundations of Physic

    Mersenne Primes, Polygonal Anomalies and String Theory Classification

    Get PDF
    It is pointed out that the Mersenne primes Mp=(2p−1)M_p=(2^p-1) and associated perfect numbers Mp=2p−1Mp{\cal M}_p=2^{p-1}M_p play a significant role in string theory; this observation may suggest a classification of consistent string theories.Comment: 10 pages LaTe

    Structural characterisation of MBE grown zinc-blende Ga1-xMnxN/GaAs(001) as a function of Ga flux

    Get PDF
    Ga1-xMnxN films grown on semi-insulating GaAs(001) substrates at 680°C with fixed Mn flux and varied Ga flux demonstrated a transition from zinc-blende/wurtzite mixed phase growth for low Ga flux (N-rich conditions) to zinc-blende single phase growth with surface Ga droplets for high Ga flux (Ga-rich conditions). N-rich conditions were found favourable for Mn incorporation in GaN lattice. α-MnAs inclusions were identified extending into the GaAs buffer layer

    The Breakdown of Topology at Small Scales

    Full text link
    We discuss how a topology (the Zariski topology) on a space can appear to break down at small distances due to D-brane decay. The mechanism proposed coincides perfectly with the phase picture of Calabi-Yau moduli spaces. The topology breaks down as one approaches non-geometric phases. This picture is not without its limitations, which are also discussed.Comment: 12 pages, 2 figure

    A Point's Point of View of Stringy Geometry

    Get PDF
    The notion of a "point" is essential to describe the topology of spacetime. Despite this, a point probably does not play a particularly distinguished role in any intrinsic formulation of string theory. We discuss one way to try to determine the notion of a point from a worldsheet point of view. The derived category description of D-branes is the key tool. The case of a flop is analyzed and Pi-stability in this context is tied in to some ideas of Bridgeland. Monodromy associated to the flop is also computed via Pi-stability and shown to be consistent with previous conjectures.Comment: 15 pages, 3 figures, ref adde

    Deformations of calibrated D-branes in flux generalized complex manifolds

    Get PDF
    We study massless deformations of generalized calibrated cycles, which describe, in the language of generalized complex geometry, supersymmetric D-branes in N=1 supersymmetric compactifications with fluxes. We find that the deformations are classified by the first cohomology group of a Lie algebroid canonically associated to the generalized calibrated cycle, seen as a generalized complex submanifold with respect to the integrable generalized complex structure of the bulk. We provide examples in the SU(3) structure case and in a `genuine' generalized complex structure case. We discuss cases of lifting of massless modes due to world-volume fluxes, background fluxes and a generalized complex structure that changes type.Comment: 52 pages, added references, added comment on ellipticity in appendix B, made minor changes according to instructions referee JHE
    • 

    corecore