72,861 research outputs found
Reynolds number dependence of scalar fluctuations in a high Schmidt number turbulent jet
The scalar rms fluctuations in a turbulent jet were investigated experimentally, using high-resolution, laser-induced fluorescence techniques. The experiments were conducted in a high Schmidt number fluid (water), on the jet centerline, over a jet Reynolds number range of 30003000 or 6500
Stochastic geometric properties of scalar interfaces in turbulent jets
Experiments were conducted in which the behavior of scalar interfaces in turbulent jets was examined, using laser-induced fluorescence (LIF) techniques. The experiments were carried out in a high Schmidt number fluid (water), on the jet centerline, over a jet Reynolds number range of 1000<=Re<=24 000. Both two-dimensional scalar data, c(r,t) at fixed x/d, and one-dimensional scalar data, c(t) at fixed x/d and r/x, were analyzed using standard one- and two-dimensional fractal box-counting algorithms. Careful treatment was given to the handling of noise. Both long and short records as well as off-centerline measurements were also investigated. The important effect of threshold upon the results is discussed. No evidence was found of a constant (power-law) fractal dimension over the range of Reynolds numbers studied. On the other hand, the results are consistent with the computed behavior of a simple stochastic model of interface geometry
Measurements of scalar power spectra in high Schmidt number turbulent jets
We report on an experimental investigation of temporal, scalar power spectra of round, high Schmidt number (Sc ≃ 1.9 × 10^3), momentum-dominated turbulent jets, for jet Reynolds numbers in the range of 1.25 × 10^4 ≤ Re ≤ 7.2 × 10^4. At intermediate scales, we find a spectrum with a slope (logarithmic derivative) that increases in absolute value with Reynolds number, but remains less than 5/3 at the highest Reynolds number in our experiments. At the smallest scales, our spectra exhibit no k^(−1) power-law behaviour, but, rather, seem to be approximated by a log-normal function, over a range of scales exceeding a factor of 40, in some cases
Some consequences of the boundedness of scalar fluctuations
Values of the scalar field c(x,t), if initially bounded, will always be bounded by the limits set by the initial conditions. This observation permits the maximum variance ∼(c′^2) to be computed as a function of the mean value c. It is argued that this maximum should be expected in the limit of infinite Schmidt numbers (zero scalar species diffusivity). This suggests that c′/c on the axis of turbulent jets, for example, may not tend to a constant, i.e., independent of x/d, in the limit of very large Schmidt numbers. It also underscores a difficulty with the k^(−1) scalar spectrum proposed by Batchelor [J. Fluid Mech. 5, 113 (1959)]
Island Distance in One-Dimensional Epitaxial Growth
The typical island distance in submonlayer epitaxial growth depends on
the growth conditions via an exponent . This exponent is known to
depend on the substrate dimensionality, the dimension of the islands, and the
size of the critical nucleus for island formation. In this paper we study
the dependence of on in one--dimensional epitaxial growth. We
derive that for and confirm this result
by computer simulations.Comment: 5 pages, 3 figures, uses revtex, psfig, 'Note added in proof'
appende
Comment on "Test of constancy of speed of light with rotating cryogenic optical resonators"
A recent experiment by Antonini et. al. [Phys. Rev. A {\bf 71}, 050101R
2005], set new limits on Lorentz violating parameters in the frame-work of the
photon sector of the Standard Model Extension (SME),
, and the Robertson-Mansouri-Sexl (RMS) framework,
. The experiment had significant systematic effects caused by
the rotation of the apparatus which were only partly analysed and taken into
account. We show that this is insufficient to put a bound on
and the bound on represents a
five-fold improvement not a ten-fold improvement as claimed.
(For reply see Phys. Rev. A 72, 066102 (2005) DOI:
10.1103/PhysRevA.72.066102)Comment: 2 page
High temperature stress-strain analysis
The objectives of the high-temperature structures program are threefold: to assist in the development of analytical tools needed to improve design analyses and procedures for the efficient and accurate prediction of the nonlinear structural response of hot-section components; to aid in the calibration, validation, and evaluation of the analytical tools by comparing predictions with experimental data; and to evaluate existing as well as advanced temperature and strain measurement instrumentation. As the analytical tools, test methods, tests, instrumentations, as well as data acquisition, management, and analysis methods are developed and evaluated, a proven, integrated analysis and experiment method will result in a more accurate prediction of the cyclic life of hot section components
The role of interstitial binding in radiation induced segregation in W-Re alloys
Due to their high strength and advantageous high-temperature properties,
tungsten-based alloys are being considered as plasma-facing candidate materials
in fusion devices. Under neutron irradiation, rhenium, which is produced by
nuclear transmutation, has been found to precipitate in elongated precipitates
forming thermodynamic intermetallic phases at concentrations well below the
solubility limit. Recent measurements have shown that Re precipitation can lead
to substantial hardening, which may have a detrimental effect on the fracture
toughness of W alloys. This puzzle of sub-solubility precipitation points to
the role played by irradiation induced defects, specifically mixed solute-W
interstitials. Here, using first-principles calculations based on density
functional theory, we study the energetics of mixed interstitial defects in
W-Re, W-V, and W-Ti alloys, as well as the heat of mixing for each
substitutional solute. We find that mixed interstitials in all systems are
strongly attracted to each other with binding energies of -2.4 to -3.2 eV and
form interstitial pairs that are aligned along parallel first-neighbor
strings. Low barriers for defect translation and rotation enable defect
agglomeration and alignment even at moderate temperatures. We propose that
these elongated agglomerates of mixed-interstitials may act as precursors for
the formation of needle-shaped intermetallic precipitates. This
interstitial-based mechanism is not limited to radiation induced segregation
and precipitation in W-Re alloys but is also applicable to other body-centered
cubic alloys.Comment: 8 pages, 7 figure
GPS Carrier Tracking Loop Performance in the presence of Ionospheric Scintillations
The performance of several GPS carrier tracking loops
is evaluated using wideband GPS data recorded during
strong ionospheric scintillations. The aim of this study is
to determine the loop structures and parameters that enable
good phase tracking during the power fades and phase
dynamics induced by scintillations. Constant-bandwidth
and variable-bandwidth loops are studied using theoretical
models, simulation, and tests with actual GPS signals.
Constant-bandwidth loops with loop bandwidths near 15
Hz are shown to lose phase lock during scintillations. Use
of the decision-directed discriminator reduces the carrier
lock threshold by ∼1 dB relative to the arctangent and conventional Costas discriminators. A proposed variablebandwidth
loop based on a Kalman filter reduces the carrier
lock threshold by more than 7 dB compared to a 15-Hz
constant-bandwidth loop. The Kalman filter-based strategy
employs a soft-decision discriminator, explicitly models
the effects of receiver clock noise, and optimally adapts
the loop bandwidth to the carrier-to-noise ratio. In extensive
simulation and in tests using actual wideband GPS
data, the Kalman filter PLL demonstrates improved cycle
slip immunity relative to constant bandwidth PLLs.Aerospace Engineering and Engineering Mechanic
Interaction-Round-a-Face Models with Fixed Boundary Conditions: The ABF Fusion Hierarchy
We use boundary weights and reflection equations to obtain families of
commuting double-row transfer matrices for interaction-round-a-face models with
fixed boundary conditions. In particular, we consider the fusion hierarchy of
the Andrews-Baxter-Forrester models, for which we find that the double-row
transfer matrices satisfy functional equations with an su(2) structure.Comment: 48 pages, LaTeX, requires about 79000 words of TeX memory. Submitted
to J. Stat. Phy
- …