763 research outputs found

    Improving Human Health in China Through Alternative Energy

    Get PDF
    In this study, we estimate the health benefits of more stringent alternative energy goals and the costs of reducing coal-fired power plant pollution in China projected in 2030. One of our two overarching alternative energy goals was to estimate the health benefits of complete elimination of coal energy, supplemented by natural gas and renewables. The second was a policy scenario similar to the U.S. 2013 Climate Action Plan (CAP), which played a pivotal role leading up to the 2015 Paris Climate Agreement. We used the Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS) model created by the International Institute for Applied Systems Analysis for our model simulations. We found that 17,137-24,220 premature deaths can be avoided if coal energy is completely replaced by alternative energy, and 8,693-9,281 premature deaths can be avoided if coal energy is replaced by alternatives in a CAP-like scenario. A CAP-like scenario using emission-controls in coal plants costs 1118perperson.ReducingcoalenergyinChinaunderaCAPlikescenariowouldfreeup11-18 per person. Reducing coal energy in China under a CAP-like scenario would free up 9.4 billion in the annual energy budget to spend on alternatives, whereas eliminating the cost of coal energy frees up $32 billion. This study's estimates show that more stringent alternative energy targets in China are worth the investment in terms of health

    Riemann solvers and undercompressive shocks of convex FPU chains

    Full text link
    We consider FPU-type atomic chains with general convex potentials. The naive continuum limit in the hyperbolic space-time scaling is the p-system of mass and momentum conservation. We systematically compare Riemann solutions to the p-system with numerical solutions to discrete Riemann problems in FPU chains, and argue that the latter can be described by modified p-system Riemann solvers. We allow the flux to have a turning point, and observe a third type of elementary wave (conservative shocks) in the atomistic simulations. These waves are heteroclinic travelling waves and correspond to non-classical, undercompressive shocks of the p-system. We analyse such shocks for fluxes with one or more turning points. Depending on the convexity properties of the flux we propose FPU-Riemann solvers. Our numerical simulations confirm that Lax-shocks are replaced by so called dispersive shocks. For convex-concave flux we provide numerical evidence that convex FPU chains follow the p-system in generating conservative shocks that are supersonic. For concave-convex flux, however, the conservative shocks of the p-system are subsonic and do not appear in FPU-Riemann solutions

    Whole Exome Sequencing of Cell-Free DNA for Early Lung Cancer: A Pilot Study to Differentiate Benign From Malignant CT-Detected Pulmonary Lesions

    Get PDF
    Introduction: Indeterminate pulmonary lesions (IPL) detected by CT pose a significant clinical challenge, frequently necessitating long-term surveillance or biopsy for diagnosis. In this pilot investigation, we performed whole exome sequencing (WES) of plasma cell free (cfDNA) and matched germline DNA in patients with CT-detected pulmonary lesions to determine the feasibility of somatic cfDNA mutations to differentiate benign from malignant pulmonary nodules.Methods: 33 patients with a CT-detected pulmonary lesions were retrospectively enrolled (n = 16 with a benign nodule, n = 17 with a malignant nodule). Following isolation and amplification of plasma cfDNA and matched peripheral blood mononuclear cells (PBMC) from patient blood samples, WES of cfDNA and PBMC DNA was performed. After genomic alignment and filtering, we looked for lung-cancer associated driver mutations and next identified high-confidence somatic variants in both groups.Results: Somatic cfDNA mutations were observed in both groups, with the cancer group demonstrating more variants than the benign group (1083 ± 476 versus 553 ± 519, p < 0.0046). By selecting variants present in >2 cancer patients and not the benign group, we accurately identified 82% (14/17) of cancer patients.Conclusions: This study suggests a potential role for cfDNA for the early identification of lung cancer in patients with CT-detected pulmonary lesions. Importantly, a substantial number of somatic variants in healthy patients with benign pulmonary nodules were also found. Such “benign” variants, while largely unexplored to date, have widespread relevance to all liquid biopsies if cfDNA is to be used accurately for cancer detection

    Measuring surface-area-to-volume ratios in soft porous materials using laser-polarized xenon interphase exchange NMR

    Full text link
    We demonstrate a minimally invasive nuclear magnetic resonance (NMR) technique that enables determination of the surface-area-to-volume ratio (S/V) of soft porous materials from measurements of the diffusive exchange of laser-polarized 129Xe between gas in the pore space and 129Xe dissolved in the solid phase. We apply this NMR technique to porous polymer samples and find approximate agreement with destructive stereological measurements of S/V obtained with optical confocal microscopy. Potential applications of laser-polarized xenon interphase exchange NMR include measurements of in vivo lung function in humans and characterization of gas chromatography columns.Comment: 14 pages of text, 4 figure

    Climate Change and Local Public Health in the United States: Preparedness, Programs and Perceptions of Local Public Health Department Directors

    Get PDF
    While climate change is inherently a global problem, its public health impacts will be experienced most acutely at the local and regional level, with some jurisdictions likely to be more burdened than others. The public health infrastructure in the U.S. is organized largely as an interlocking set of public agencies at the federal, state and local level, with lead responsibility for each city or county often residing at the local level. To understand how directors of local public health departments view and are responding to climate change as a public health issue, we conducted a telephone survey with 133 randomly selected local health department directors, representing a 61% response rate. A majority of respondents perceived climate change to be a problem in their jurisdiction, a problem they viewed as likely to become more common or severe over the next 20 years. Only a small minority of respondents, however, had yet made climate change adaptation or prevention a top priority for their health department. This discrepancy between problem recognition and programmatic responses may be due, in part, to several factors: most respondents felt personnel in their health department–and other key stakeholders in their community–had a lack of knowledge about climate change; relatively few respondents felt their own health department, their state health department, or the Centers for Disease Control and Prevention had the necessary expertise to help them create an effective mitigation or adaptation plan for their jurisdiction; and most respondents felt that their health department needed additional funding, staff and staff training to respond effectively to climate change. These data make clear that climate change adaptation and prevention are not currently major activities at most health departments, and that most, if not all, local health departments will require assistance in making this transition. We conclude by making the case that, through their words and actions, local health departments and their staff can and should play a role in alerting members of their community about the prospect of public health impacts from climate change in their jurisdiction

    Ecology: a prerequisite for malaria elimination and eradication

    Get PDF
    * Existing front-line vector control measures, such as insecticide-treated nets and residual sprays, cannot break the transmission cycle of Plasmodium falciparum in the most intensely endemic parts of Africa and the Pacific * The goal of malaria eradication will require urgent strategic investment into understanding the ecology and evolution of the mosquito vectors that transmit malaria * Priority areas will include understanding aspects of the mosquito life cycle beyond the blood feeding processes which directly mediate malaria transmission * Global commitment to malaria eradication necessitates a corresponding long-term commitment to vector ecolog

    Mixed-Model Noise Removal in 3D MRI via Rotation-and-Scale Invariant Non-Local Means

    Get PDF
    Mixed noise is a major issue influencing quantitative analysis in different forms of magnetic resonance image (MRI), such as T1 and diffusion image like DWI and DTI. Using different filters sequentially to remove mixed noise will severely deteriorate such medical images. We present a novel algorithm called rotation-and-scale invariant nonlocal means filter (RSNLM) to simultaneously remove mixed noise from different kinds of three-dimensional (3D) MRI images. First, we design a new similarity weights, including rank-ordered absolute difference (ROAD), coming from a trilateral filter (TriF) that is obtained to detect the mixed and high-level noise. Then, we present a shape view to consider the MRI data as a 3D operator, with which the similarity between the patches is calculated with the rigid transformation. The translation, rotation and scale have no influence on the similarity. Finally, the adaptive parameter estimation method of ROAD is illustrated, and the effective proof that validates the proposed algorithm is presented. Experiments using synthetic data with impulse noise, Rician noise, and the real MRI data confirm that the proposed method yields superior performance compared with current state-of-the-art methods

    Predicting the Impact of Long-Term Temperature Changes on the Epidemiology and Control of Schistosomiasis: A Mechanistic Model

    Get PDF
    , the causative agent of schistosomiasis in humans.The model showed that the impact of temperature on disease prevalence and abundance is not straightforward; the mean infection burden in humans increases up to 30°C, but then crashes at 35°C, primarily due to increased mortalities of the snail intermediate host. In addition, increased temperatures changed the dynamics of disease from stable, endemic infection to unstable, epidemic cycles at 35°C. However, the prevalence of infection was largely unchanged by increasing temperatures. Temperature increases also affected the response of the model to changes in each parameter, indicating certain control strategies may become less effective with local temperature changes. At lower temperatures, the most effective single control strategy is to target the adult parasites through chemotherapy. However, as temperatures increase, targeting the snail intermediate hosts, for example through molluscicide use, becomes more effective. will not respond to increased temperatures in a linear fashion, and the optimal control strategy is likely to change as temperatures change. It is only through a mechanistic approach, incorporating the combined effects of temperature on all stages of the life-cycle, that we can begin to predict the consequences of climate change on the incidence and severity of such diseases
    corecore