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Abstract. Mixed noise is a major issue influencing quantitative analysis
in different forms of magnetic resonance image (MRI), such as T1 and
diffusion image like DWI and DTI. Using different filters sequentially
to remove mixed noise will severely deteriorate such medical images.
We present a novel algorithm called rotation-and-scale invariant nonlo-
cal means filter (RSNLM) to simultaneously remove mixed noise from
different kinds of three-dimensional (3D) MRI scan. Firstly, new simi-
larity weights including rank-ordered absolute difference (ROAD) with
a trilateral filter (TriF) are obtained to detect the mixed and high level
noise. Then, we present a geometric view to consider the MRI data as
3D operator, with which the similarity between the patches is calculated
canceling the relative rigid transformation, so that translation, rotation
and scaling transformation have no influence on the similarity. Lastly,
we illustrate an adaptive parameter estimation method for ROAD. We
present a mathematical proof of the validity of the algorithm. We also
evaluate the algorithm capabilities with several experiments using syn-
thetic data with impulse noise, Rician noise and real MRI data. The
results confirm that our method has superior performance overcoming
the state-of-the-art methods.

1 Introduction

With Modern MRI reconstruction systems, the resulting noise is more compli-
cated than the traditional Rician distribution with constant noise power [1],
involving mixed types of noise. During the transmission, impulse noise will also
be generated in MRIs via noisy sensors, communication channels, transmission
apparatus, etc. Simultaneously removing all these noise types keeping the mean-
ingful edges is a critical problem for the medical image processing.

Previous works have focused on removing the traditional MRI noise model,
rician noise, with the non-local means(NLM) [2] method, which has particularly
good performance in edge-preserving. Coupé et al [5] introduced NLM in MRI
denoising, and then Wiest used it on diffusion MRI dataset [12]. The key fea-
tures of NLM are that it uses non-local information and self-similarity weights
for denoising. Recently, Manjón [9] proposed method of prefiltered rotationally
invariant NLM3D(Pri-NLM) with combining different filter together. Chen et
al [3] calculated the neighborhood both on the spatial and wavevector space in a
series of papers to obtain the good result. However, few paper discussed mixed
noise removal and different kinds of weight design.
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There are two main approaches to removing the mixture of Rician noise and
impulse noise from MRI: removing different kinds of noise in multiple steps or
simultaneously. For the first approach, one common method is to combine a
Rician filter and an impulse filter together. The proposed BM4DM is a filter
that integrate the BM4D [8] and median filters, and was adopted to remove
two models noise respectively. However, the intensity of pixels is often changed
by the first filter, in that they usually invalidate efforts to remove the other
noise in subsequent steps, and vice versa. For the second approach, Garnett
[11] introduced the ROAD statistic for the detection of pixels contaminated by
impulse noise, and integrated it into the bilateral filter to construct the trilateral
filter (TriF [7]). The patch-based weighted means filter [6] improved the TriF
with the weights extended from NLM.

In this paper, we adopt the second approach and present a new method,
RSNLM, to remove the mixed noise simultaneously from the 3D MRI data. Our
main contributions are threefold: (1) We combine the ideas of NLM and TriF
to remove the mixed noise simultaneously for the high self-similarity of 3D MRI
data. (2) We consider the 3D patch as a 3D volume shape model in a computer
graphics view. We eliminate the rigid transformation (translation, rotation and
scaling) to calculate the similarity of different 3D patches. (3) We propose a
automatic parameter selection of the ROAD statistic, making the algorithm
adaptive and efficient for detecting and removing high level impulse noises

2 Methods

Problem formulation. Various noises will coexist in MR images, especially
Rician noise and impulse noise. Due to the distribution of impulsive noise, the
pixel destroyed by impulse noise is always clearly different from its surrounding
pixels. The noise level of impulse noise is defined by p, which is the probability
that a given pixel is corrupted by impulse noise. It is known that the magnitude
of an MR image is computed from the real image and imaginary image, both
containing Gaussian distributed noise. Thus, the noise contained in the magni-
tude MRI follows a Rician distribution [10]. The main concept behind NLM is
to estimate each pixel by a weighted mean of the observed values v(j), for j in
search window, Ni(D), and with weights depending on the similarity between
local patches centered at i and j. More precisely, the NLM filter is defined as

v̂ (i) =
∑

j∈Ni(D) w(i,j)v(j)
∑

j∈Ni(D) w(i,j) , with w(i, j) = e−‖v(Ni)−v(Nj)‖
2
2/(2σ

2
h), (1)

where Ni is a 3D patch of d3 pixels centered at i, and v(Ni) is the vector
composed of those pixels, arranged in a fixed order. The similarity between two
patches is measured by the L2-distance, ‖v(Ni)− v(Nj)‖2. The classic NLM is
designed to remove Gaussian noise. We propose a modification based on [5] for
the unbiased removal of the noncentral Rician distributed noise:

v̂ (i) =

√

√

√

√max

((
∑

j∈Ni(D) w(i, j)v
2(j)

∑

j∈Ni(D) w(i, j)

)

− 2σ2, 0

)

(2)



Mixed noise removal in MRI with RSNLM 3

σ is the noise level. Our study focuses on finding an effective strategy for describ-
ing the similarity of patches and then calculating better weights. An overview
of our method is summarized in Alg.1.

Algorithm 1 The RSNLM Algorithm

Require:

1: Noisy MRI data: I;
2: The set of hyper-parameter: Θ= {D, d, σI , σM , σS , σSM} ;
Ensure:

3: Estimate parameter m in ROAD statistic ;
4: A D3 search window ;
5: A d3 similar patch;
6: repeat

7: Moving the search window Ni(D) centered at i ∈ I ;
8: Get the estimative patch Ni(d) centered at i ;
9: repeat

10: Moving the similar patch Nj(d) centered at j ∈ Ni(D) ;
11: Find Ni(d)’s most similar patch by the rigid transformation of Nj(d) .
12: Calculate w(i, j) by Eq.3;
13: until Traverse all the points in Ni(D) .
14: Obtain the estimation intensity result of pixel i,O(i)=v̂(i)
15: until Traverse all the points in I.
16: return The restored MRI data O.

Weights estimation in RSNLM The patch similarity of RSNLM defined in
Eq. 3.

w(i, j)=ws(i, j)wI(i, j)wMR(i, j) (3)

Inspired by TriF, we utilize ROAD [11] to detect pixels contaminated by
impulse noise and other high level noise. We consider three factors to express
the similarity between patches i and j and their weight w(i, j). By theory, in
fact, a local similarity is more reliable than a farther away one. In that, the
spatial weight is defined as ws(i, j) = e−‖i−j‖2

2/(2σ
2
S), where ‖i− j‖ is the spatial

distance between pixel i and j.

The impulse detective weight is defined as wI(i, j) = e−ROAD(j)2/(2σ2
I ) , which

is close to zero if j is an impulse noisy point or serious different from its surround-
ing pixels. The value of ROAD at pixel j is defined as ROAD(j)=

∑m
k=1 rk(j)

where rk(j) is the k-th term in the set {|v(i)− v(j)| : i ∈ Nj(R) \ {j}} arranged
in an ascending order with some terms possibly equal. If j is a impulse noise
or in patch j where impulse noise exists, then ROAD(j) will be very high. The
similar weight wMR describes the similarity of pixel values between two patches
as

wMR(i, j) = e−(‖v(Ni)−v(Nj)‖SR)2/(2σ2
MR) (4)
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where ‖v(Ni)− v(Nj)‖SR = inf
r∈[0,2π]
t∈[1,2]

‖v(Ni)− v(StRrNj)‖

=

√

√

√

√

∑

k∈N0
ws(j, k)JI(i+ k, j + StRrk) |v(i+ k)− v(j + StRrk)|

2

∑

k∈N0
ws(j, k)JI(i+ k, j + StRrk)

.

StRr represents the rotation angle of r and shrinking t times with respect to the
origin 0. StRrNj stands for the rotation and scaling of Nj with respect to its
center j, i.e, StRrNj =

{

j + StRrk : k ∈ N0
j

}

, N0
j is the most primitive patch

centered at j without rigid transformation of Nj . The above defined ws(j, k) is
used to describe the spatial distance between j and k, giving more importance
to similarity between closer pixels. The term JI(i + k, j + StRrk), as the joint
impulse coefficient of i + k and j + StRrk, is defined as JI(i + k, j + StRrk) =
wI(i + k)wI(j + StRrk), and is used to remove the influence of impulse noise
pixels in the similarity measure.

With these three weights, we can detect the impulse noise and high level
other noise and simultaneously remove all kinds of noise.

Ridge transformation of the compared patch. From shape view, the ridge
transformation(translation, scaling, and rotation) of the patch should have no
influence on the similarity between patches, ‖v(Ni)− v(Nj)‖SR in Eq.4.

Translation invariance. With patch movement, the original location of
the patch in the window has no influence
on similarity. Scale invariance. In our
method, we obtain smaller copies of the
original images by taking a morphological
transformation, where t is the reduced ra-
tio. The patch size d of j is (23)t−1 bigger
than the patch i. With interlacing down-
sampling t− 1 times, we can eliminate the
influence on multi-scale and obtain more
compared patch. Rotation invariance.

To complete rotation in 3D space, we de-
composed the process into three 2D rota-
tions around the three axes (x, y, z) respec-
tively shown in Fig. 2. A window can be di-
vided into eight parts ( 1©∼ 8©), with which Fig. 1: Rotation diagram

the pose of the patch can be determined by finding one part’s position af-
ter the rotation. To minimize ‖v(Ni)− v(Nj)‖SR on r ∈ [0, 2π], we used the

discrete solution of minimizing over the set of a finite number of angles, for
r ∈ {2πk/n, k = 0, 1, · · · , n− 1} with n > 1 as a suitable integer. n is set as a
function of the size of cubes Ni(d); in our experiments we choose n = 4(d− 1) .
Set n = 16 for d ≥ 5 for the time complexity.

Adaptive ROAD parameter. The parameter m in ROAD is an important
factor for detecting the impulse level which should not be constant as [11]. We
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set m as a function of the impulse noisy level p. X, the number of non-impulse
noisy points in Ni(R), follows binomial distribution with parameters R×R×R
and 1−p. The probability ofX=k is P (X = k)=Ck

R×R×R(1−p)kpR×R×R−k. The
choice of m should ensure that X=k with great probability, that P (X ≥ m) ≥ pc
, with pc close to 1, called the confidence probability. Therefore, we choose m as
the largest integer in

∑R×R×R
k=m P (X = k) ≥ pc. For example, in our experiments

we set pc = 0.95. Therefore, as examples, for R=3 we have m = 14 if p = 0.1.

Proof of algorithm validity The effectiveness and unbiasedness of v̂ (i) is
considered to prove the validity of our algorithm. According to the Law of Large

Numbers, we can draw the expectation of v̂2(i)−u2(i) as Ei=E(v̂2(i)−u2(i)) =
∑

j
wj

w (u2(j) − u2(i)), with the number of noisy pixels n increasing unlimited,
The Ei will be small when x1 ≤ x2 ≤ · · · ≤ xt and wt ≤ wt−1 ≤ · · · ≤ w1,
where xj is the absolute value of u2(j) − u2(i). Actually, changing on these
two orders would trigger the increase of Ei. To maintain these orders, it is
necessary to find a strategy that can describe the similarity of u(i) and u(j)
well. Besides that, we also consider the D(v̂2(i)), the unbiasedness of v̂2(i), that

can be written as D(v̂2(i))=
∑

j

w2
j

w2σ
2. According to the Cauchy inequality, we

obtain the minimum of D(v̂2(i)) if and only if w1=w2=w3= · · ·=wm= 1
m , where

m is the number of wj that satisfies wj 6= 0 . D(v̂2(i)) is an increasing function
of the difference between wk and wl,with ∀k, l ∈ Ni(D). The above analysis and
proof motivates us to find the most similar patches even with the accidental
effect caused by noise interference. The larger the cubes are, the smaller the
similar contingency is, which makes results more credible. Based on contextual
analysis, we provide the rotationally and scaling invariant similarity measure to
find more similar patches and then obtain the best estimation of u(i).

3 Experiments and Discussion

In this section, we report several experiments that we conducted to compare
the RSNLM with BM4DM, TriF, and Pri-NLM using a platform constructed
in MATLAB 2015b and Visual Studio 2012. To measure the quality of the l-
ter, PSNR and SSIM are adopted to measure the quality of restored images.
Our experiments are done on both synthetic data and clinical data respectively.
The synthetic MRIs (T1) with 1 mm3 voxel resolution (8 bit quantization) were
from BrainWeb [4] and had different noise models (Rician, impulse) at different
level. The clinical data (DWI and DTI with 2.5mm isotropic resolution) were
downloaded from In Vivo Human Database acquired under Human Brain Project
and National Research Resource Center grant.

Synthetic data. The denoising results of one T1 weighted image and it’s
regional close-up views of each methods are shown in Fig.2. The results demon-
strate the remarkable noise removing and edge-preserving property of RSNLM.
In the case of noise level (0.1,3), we set Θ= {7, 3, 358, 42, 0.4, 2}. In Fig.2, we
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Fig. 2. Filtering results of an axial slice of T1 weighted Brain Web (Rician noise level
of 5% and impulse noise level of p=0.3). These three rows of images correspond to the
results of three local parts respectively. Each column corresponds to (a)original image,
(b)noisy image, result from (c)TriF, (d)Pri-NLM, (e)BM4DM and (f)RSNLM.

(a) PSNR (b) SSIM

Fig. 3. The average results of PSNR (a) and SSIM (b) of five T1 weighted images with
different noise level. ’(A,B)’ express the noise level with ’A’ for impulse noise and ’B’
for Rician noise on horizontal axis. From left to right color (purple:TriF, blue:Pri-NLM,
green: BM4DM and yellow: RSNLM) represent different methods with histograms.

can see the detail and texture of the cerebral cortex(line 2) and white mat-
ter(line 3) keeps better by our RSNLM than the other method. As observed
in Fig.2(c)(d)’s, TriF and Pri-NLM removed most of the noise but still remain
impulse noise and blurred the image. BM4DM(in Fig.2(e)) perform better than
other two methods, but still worse than RSNLM in preserving the boundary.
Fig. 3 shows the average of 5 sets of synthetic T1 weighted images denoising
results(PSNR, SSIM). Though the denoising result indicates that our method,
RSNLM, performance better than other compared methods in PSNR and SSIM
values with different noise levels. Our method provide the best PSNR 34.9 with
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SSIM 92.3% on p = 0.1 and σ = 3. Compared with the second best method
BM4DM, the average improvement with 2.59 in PSNR and 3% in SSIM. That
means the high level mixed noise can be satisfactorily removed by RSNLM with
the edge preservation.

Fig. 4. Filtering results of an axial slice of DWI. The left parts of this figure is the
original DWI (A) and DTI(B) slice and it’s two local fields (red and blue) to be enlarged
shown on the right. it’s closed-up views. These first and second rows on the right part
of this figure are respectively the closed-up view of red and blue filed with different
filtering methods (a)TriF, (b)Pri-NLM, (c)BM4DM and (d)RSNLM.

Clinical data. We verify our method with clinical diffusion data(DWI and
DTI) in Fig. 4. Compared with the experiments on synthetic data, the D-Otsu
(combine distance constraints and classic Otsu) is provided to segment the dif-
fusion MRI as foreground and the background used to estimate the noise level
σ. The proportion of abnormal points in background is taken as the value of p.
When performing DTI filtering, we consider the similarity of eigenvectors and
eigenvalues of diffusion matrix rather than the similarity based on pixels. The
hyper-parameter set Θ is assigned as Θ= {7, 3, 375, 13.5, 0.5, 4.5} in DTI image.
In case of filtering DWI, the value of estimated σ and p are respectively 27.5 and
0.093, with Θ= {5, 3, 610, 21, 0.6, 2}. Just as shown in Fig. 4, in the tensor field,
the BM4DM and RSNLM are also confirmed to be effective in preserving edges
while removing noise. But the TriF and Pri-NLM blur structural boundaries
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especially on the orange rectangle in enlarged parts. With similar result comes
from the Fractional Anisotropy (FA) of DTI with four methods. The RSNLM
reduces the ambiguity and unevenness of FA boundaries caused by noise than
BM4DM.

4 Conclusion

We provide a novel filter for 3D MRI mixed noise removing simultaneously via
rotation-and scale invariant nonlocal means filter. We combine the shape view
with statistic view together to treat the mixed noise of MRI image. Our method
over performance state-of-the-art method as TriF, Pri-NLM and BM4DM not
only with recover visualization but also with data analysis in PSNR and SSIM.
In future we would like to extend our method to other medical image denoising
problem and models.
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