295 research outputs found

    Can Hyperfine Excitation explain the Observed Oscillation-Puzzle of Nuclear Orbital Electron Capture of Hydrogen-like Ions?

    Full text link
    Modulated in time orbital electron capture (EC) decays have been observed recently in stored H-like 140^{140}Pr58+^{58+} and 142^{142}Pm60+^{60+} ions. Although, the experimental results are extensively discussed in literature, a firm interpretation has still to be established. Periodic transitions between the hyperfine states could possible lead to the observed effect. Both selected nuclides decay to stable daughter nuclei via allowed Gamow-Teller transitions. Due to the conservation of total angular momentum, the allowed EC decay can only proceed from the hyperfine ground state of parent ions. In this work we argue that periodic transitions to the excited hyperfine state (sterile) in respect to the allowed EC decay ground state cannot explain the observed decay pattern

    Toward CP-even Neutrino Beam

    Full text link
    The best method of measuring CP violating effect in neutrino oscillation experiments is to construct and use a neutrino beam made of an ideal mixture of νˉe\bar{\nu}_e and νe\nu_e of monochromatic lines. The conceptual design of such a beam is described, together with how to measure the CP-odd quantity. We propose to exploit an accelerated unstable hydrogen-like heavy ion in a storage ring, whose decay has both electron capture and bound beta decay with a comparable fraction.Comment: 6 pages, 2 figures, Published versio

    Effect of differences in proton and neutron density distributions on fission barriers

    Full text link
    The neutron and proton density distributions obtained in constrained Hartree-Fock-Bogolyubov calculations with the Gogny force along the fission paths of 232Th, 236U, 238U and 240Pu are analyzed. Significant differences in the multipole deformations of neutron and proton densities are found. The effect on potential energy surfaces and on barrier heights of an additional constraint imposing similar spatial distributions to neutrons and protons, as assumed in macroscopic-microscopic models, is studied.Comment: 5 pages in Latex, 4 figures in ep

    Isospin Dependence in the Odd-Even Staggering of Nuclear Binding Energies

    Full text link
    The FRS-ESR facility at GSI provides unique conditions for precision measurements of large areas on the nuclear mass surface in a single experiment. Values for masses of 604 neutron-deficient nuclides (30<=Z<=92) were obtained with a typical uncertainty of 30 microunits. The masses of 114 nuclides were determined for the first time. The odd-even staggering (OES) of nuclear masses was systematically investigated for isotopic chains between the proton shell closures at Z=50 and Z=82. The results were compared with predictions of modern nuclear models. The comparison revealed that the measured trend of OES is not reproduced by the theories fitted to masses only. The spectral pairing gaps extracted from models adjusted to both masses, and density related observables of nuclei agree better with the experimental data.Comment: Physics Review Letters 95 (2005) 042501 http://link.aps.org/abstract/PRL/v95/e04250

    Systematics of Fission Barriers in Superheavy Elements

    Get PDF
    We investigate the systematics of fission barriers in superheavy elements in the range Z = 108-120 and N = 166-182. Results from two self-consistent models for nuclear structure, the relativistic mean-field (RMF) model as well as the non-relativistic Skyrme-Hartree-Fock approach are compared and discussed. We restrict ourselves to axially symmetric shapes, which provides an upper bound on static fission barriers. We benchmark the predictive power of the models examining the barriers and fission isomers of selected heavy actinide nuclei for which data are available. For both actinides and superheavy nuclei, the RMF model systematically predicts lower barriers than most Skyrme interactions. In particular the fission isomers are predicted too low by the RMF, which casts some doubt on recent predictions about superdeformed ground states of some superheavy nuclei. For the superheavy nuclei under investigation, fission barriers drop to small values around Z = 110, N = 180 and increase again for heavier systems. For most of the forces, there is no fission isomer for superheavy nuclei, as superdeformed states are in most cases found to be unstable with respect to octupole distortions.Comment: 17 pages REVTEX, 12 embedded eps figures. corrected abstrac

    Investigation of risk factors for introduction of highly pathogenic avian influenza H5N1 infection among commercial turkey operations in the United States, 2022: a case-control study

    Get PDF
    Introduction: The 2022–2023 highly pathogenic avian influenza (HPAI) H5N1 outbreak in the United States (U.S.) is the largest and most costly animal health event in U.S. history. Approximately 70% of commercial farms affected during this outbreak have been turkey farms. Methods: We conducted a case-control study to identify potential risk factors for introduction of HPAI virus onto commercial meat turkey operations. Data were collected from 66 case farms and 59 control farms in 12 states. Univariate and multivariable analyses were conducted to compare management and biosecurity factors on case and control farms. Results: Factors associated with increased risk of infection included being in an existing control zone, having both brooders and growers, having toms, seeing wild waterfowl or shorebirds in the closest field, and using rendering for dead bird disposal. Protective factors included having a restroom facility, including portable, available to crews that visit the farm and workers having access and using a shower at least some of the time when entering a specified barn. Discussion: Study results provide a better understanding of risk factors for HPAI infection and can be used to inform prevention and control measures for HPAI on U.S. turkey farms

    Shell structure of superheavy nuclei in self-consistent mean-field models

    Get PDF
    We study the extrapolation of nuclear shell structure to the region of superheavy nuclei in self-consistent mean-field models -- the Skyrme-Hartree-Fock approach and the relativistic mean-field model -- using a large number of parameterizations. Results obtained with the Folded-Yukawa potential are shown for comparison. We focus on differences in the isospin dependence of the spin-orbit interaction and the effective mass between the models and their influence on single-particle spectra. While all relativistic models give a reasonable description of spin-orbit splittings, all non-relativistic models show a wrong trend with mass number. The spin-orbit splitting of heavy nuclei might be overestimated by 40%-80%. Spherical doubly-magic superheavy nuclei are found at (Z=114,N=184), (Z=120,N=172) or (Z=126,N=184) depending on the parameterization. The Z=114 proton shell closure, which is related to a large spin-orbit splitting of proton 2f states, is predicted only by forces which by far overestimate the proton spin-orbit splitting in Pb208. The Z=120 and N=172 shell closures predicted by the relativistic models and some Skyrme interactions are found to be related to a central depression of the nuclear density distribution. This effect cannot appear in macroscopic-microscopic models which have a limited freedom for the density distribution only. In summary, our findings give a strong argument for (Z=120,N=172) to be the next spherical doubly-magic superheavy nucleus.Comment: 22 pages REVTeX, 16 eps figures, accepted for publication in Phys. Rev.

    Theoretical Aspects of Science with Radioactive Nuclear Beams

    Get PDF
    Physics of radioactive nuclear beams is one of the main frontiers of nuclear science today. Experimentally, thanks to technological developments, we are on the verge of invading the territory of extreme N/Z ratios in an unprecedented way. Theoretically, nuclear exotica represent a formidable challenge for the nuclear many-body theories and their power to predict nuclear properties in nuclear terra incognita. It is important to remember that the lesson learned by going to the limits of the nuclear binding is also important for normal nuclei from the neighborhood of the beta stability valley. And, of course, radioactive nuclei are crucial astrophysically; they pave the highway along which the nuclear material is transported up in the proton and neutron numbers during the complicated synthesis process in stars.Comment: 26 ReVTeX pages, 11 Postscript figures, uses epsf.sty, to be published in: Theme Issue on Science with Beams of Radioactive Nuclei, Philosophical Transactions, ed. by W. Gelletl

    Mean field theory for global binding systematics

    Full text link
    We review some possible improvements of mean field theory for application to nuclear binding systematics. Up to now, microscopic theory has been less successful than models starting from the liquid drop in describing accurately the global binding systematics. We believe that there are good prospects to develop a better global theory, using modern forms of energy density functionals and treating correlation energies systematically by the RPA.Comment: RevTex, 17 pages, 5 eps figures. To be published in Yadernaya Fizika, special edition for the 90th birthday of Professor A.B. Migda

    Superheavy nuclei in selfconsistent nuclear calculations

    Get PDF
    The shell structure of superheavy nuclei is investigated within various parametrizations of relativistic and nonrelativistic nuclear mean field models. The heaviest known even-even nucleus 264Hs is used as a benchmark to estimate the predictive value of the models. From that starting point, doubly magic spherical nuclei are searched in the region Z=110-140 and N=134-298. They are found at (Z=114, N=184), (Z=120, N=172), or at (Z=126, N=184), depending on the parametrization.Comment: 16 pages RevTeX, 2 tables, 2 low resolution Gif figures (high resolution PostScript versions are available at http://www.th.physik.uni-frankfurt.de/~bender/nucl_struct_publications.html or at ftp://th.physik.uni-frankfurt.de/pub/bender ), submitted to Phys. Rev.
    corecore