1,205 research outputs found

    Evaluation of gas phase mass transfer at low reynolds numbers: a new model system

    Get PDF
    A new experimental system is presented which is suitable for studying gas side mass transfer coefficients in packed columns at Reynolds numbers even lower than 1.0. The system involves desorption of iodine from aqueous KI solutions. The reversible complex formation between iodine and iodine ions effectively slows down the concentration changes which otherwise would be too rapid for accurate experimentation

    Quantum information and quantum simulation of neutrino physics

    Full text link
    In extreme astrophysical environments such as core-collapse supernovae and binary neutron star mergers, neutrinos play a major role in driving various dynamical and microphysical phenomena, such as baryonic matter outflows, the synthesis of heavy elements, and the supernova explosion mechanism itself. The interactions of neutrinos with matter in these environments are flavor-specific, which makes it of paramount importance to understand the flavor evolution of neutrinos. Flavor evolution in these environments can be a highly nontrivial problem thanks to a multitude of collective effects in flavor space, arising due to neutrino-neutrino (ν\nu-ν\nu) interactions in regions with high neutrino densities. A neutrino ensemble undergoing flavor oscillations under the influence of significant ν\nu-ν\nu interactions is somewhat analogous to a system of coupled spins with long-range interactions among themselves and with an external field ('long-range' in momentum-space in the case of neutrinos). As a result, it becomes pertinent to consider whether these interactions can give rise to significant quantum correlations among the interacting neutrinos, and whether these correlations have any consequences for the flavor evolution of the ensemble. In particular, one may seek to utilize concepts and tools from quantum information science and quantum computing to deepen our understanding of these phenomena. In this article, we attempt to summarize recent work in this field. Furthermore, we also present some new results in a three-flavor setting, considering complex initial states.Comment: 13 pages, 3 figures. Invited review for the Eur. Phys. J. A special issue on "Quantum computing in low-energy nuclear theory

    The role of charge-matching in nanoporous materials formation

    Get PDF
    Unravelling the molecular-level mechanisms that lead to the formation of mesoscale-ordered porous materials is a crucial step towards the goal of computational material design. For silica templated by alkylamine surfactants, a mechanism based on hydrogen-bond interactions between neutral amines and neutral silicates in solution has been widely accepted by the materials science community, despite the lack of conclusive evidence to support it. We demonstrate, through a combination of experimental measurements and multi-scale modelling, that the so-called “neutral templating route” does not represent a viable description of the synthesis mechanism of hexagonal mesoporous silica (HMS), the earliest example of amine-templated porous silica. Instead, the mesoscale structure of the material is defined by charge-matching of ionic interactions between amines and silicates. This has profound implications for the synthesis of a wide range of templated porous materials, and may shed new light on developing sustainable and economical routes to high value porous materials

    Micro-Capsules in Shear Flow

    Full text link
    This paper deals with flow-induced shape transitions of elastic capsules. The state of the art concerning both theory and experiments is briefly reviewed starting with dynamically induced small deformation of initially spherical capsules and the formation of wrinkles on polymerized membranes. Initially non-spherical capsules show tumbling and tank-treading motion in shear flow. Theoretical descriptions of the transition between these two types of motion assuming a fixed shape are at variance with the full capsule dynamics obtained numerically. To resolve the discrepancy, we expand the exact equations of motion for small deformations and find that shape changes play a dominant role. We classify the dynamical phase transitions and obtain numerical and analytical results for the phase boundaries as a function of viscosity contrast, shear and elongational flow rate. We conclude with perspectives on timedependent flow, on shear-induced unbinding from surfaces, on the role of thermal fluctuations, and on applying the concepts of stochastic thermodynamics to these systems.Comment: 34 pages, 15 figure

    Spectral analysis of resting cardiovascular variables and responses to oscillatory LBNP before and after 6 degree head dowm bedrest

    Get PDF
    A major focus of our research program is to develop noninvasive procedures for determining changes in cardiovascular function associated with the null gravity environment. We define changes in cardiovascular function to be (1) the result of the regulatory system operating at values different from 'normal' but with an overall control system basically unchanged by the null gravity exposure, or (2) the result of operating with a control system that has significantly different regulatory characteristics after an exposure. To this end, we have used a model of weightlessness that consisted of exposing humans to 2 hrs. in the launch position, followed by 20 hrs. of 6 deg head down bedrest. Our principal objective was to use this model to measure cardiovascular responses to the 6 deg head down bedrest protocol and to develop the most sensitive 'systems identification' procedure for indicating change. A second objective, related to future experiments, is to use the procedure in combination with experiments designed to determine the degree to which a regulatory pathway has been altered and to determine the mechanisms responsible for the changes

    A hierarchical model of transcriptional dynamics allows robust estimation of transcription rates in populations of single cells with variable gene copy number

    Get PDF
    Motivation: cis-regulatory DNA sequence elements, such as enhancers and silencers, function to control the spatial and temporal expression of their target genes. Although the overall levels of gene expression in large cell populations seem to be precisely controlled, transcription of individual genes in single cells is extremely variable in real time. It is, therefore, important to understand how these cis-regulatory elements function to dynamically control transcription at single-cell resolution. Recently, statistical methods have been proposed to back calculate the rates involved in mRNA transcription using parameter estimation of a mathematical model of transcription and translation. However, a major complication in these approaches is that some of the parameters, particularly those corresponding to the gene copy number and transcription rate, cannot be distinguished; therefore, these methods cannot be used when the copy number is unknown. Results: Here, we develop a hierarchical Bayesian model to estimate biokinetic parameters from live cell enhancer–promoter reporter measurements performed on a population of single cells. This allows us to investigate transcriptional dynamics when the copy number is variable across the population. We validate our method using synthetic data and then apply it to quantify the function of two known developmental enhancers in real time and in single cells

    Optically-Induced Symmetry Breaking via Nonlinear Phononics

    Get PDF
    Optical nonlinearities in solids reveal information about both the in-plane rotational and out-of-plane inversion symmetries of a crystal. In the van der Waals material hexagonal boron nitride (hBN) both these symmetries and the linear vibrational properties have led to the rich physics of mid-infrared phonon-polaritons. However, the role of strong electron-phonon nonlinearities requires further study. In this work, we investigate both theoretically and experimentally the rich interplay of phonon anharmonicity and symmetry in phonon-polariton mediated nonlinear optics. We show that large enhancements (>30x) of third-harmonic generation occur for incident femtosecond pulses that are resonant with the hBN transverse optical phonons. In addition, we predict and observe large transient sub-picosecond duration second-harmonic signals during resonant excitation, which in equilibrium is forbidden by symmetry. This surprising result indicates that instantaneous crystal inversion symmetry breaking can be optically induced and controlled via phonon interactions by both the power and polarization of the pump laser
    • …
    corecore