241 research outputs found

    Surface Environmental Surveillance Project: Locations Manual Volume 1 ? Air and Water Volume 2 ? Farm Products, Soil & Vegetation, and Wildlife

    Get PDF
    This report describes all environmental monitoring locations associated with the Surface Environmental Surveillance Project. Environmental surveillance of the Hanford site and surrounding areas is conducted by the Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy (DOE). Sampling is conducted to evaluate levels of radioactive and nonradioactive pollutants in the Hanford environs, as required in DOE Order 450.1, Environmental Protection Program, and DOE Order 5400.5, Radiation Protection of the Public and the Environment. The environmental surveillance sampling design is described in the Hanford Site Environmental Monitoring Plan, United States Department of Energy, Richland Operation Office (DOE/RL-91-50). This document contains the locations of sites used to collect samples for the Surface Environmental Surveillance Project (SESP). Each section includes directions, maps, and pictures of the locations. A general knowledge of roads and highways on and around the Hanford Site is necessary to successfully use this manual. Supplemental information (Maps, Gazetteer, etc.) may be necessary if user is unfamiliar with local routes. The SESP is a multimedia environmental surveillance effort to measure the concentrations of radionuclides and chemicals in environmental media to demonstrate compliance with applicable environmental quality standards and public exposure limits, and assessing environmental impacts. Project personnel annually collect selected samples of ambient air, surface water, agricultural products, fish, wildlife, and sediments. Soil and vegetation samples are collected approximately every 5 years. Analytical capabilities include the measurement of radionuclides at very low environmental concentrations and, in selected media, nonradiological chemicals including metals, anions, volatile organic compounds, and total organic carbon

    Isotopic Tracking of Hanford 300 Area Derived Uranium in the Columbia River

    Get PDF
    Our objectives in this study are to quantify the discharge rate of uranium (U) to the Columbia River from the Hanford Site's 300 Area, and to follow that U down river to constrain its fate. Uranium from the Hanford Site has variable isotopic composition due to nuclear industrial processes carried out at the site. This characteristic makes it possible to use high-precision isotopic measurements of U in environmental samples to identify even trace levels of contaminant U, determine its sources, and estimate discharge rates. Our data on river water samples indicate that as much as 3.2 kg/day can enter the Columbia River from the 300 Area, which is only a small fraction of the total load of dissolved natural background U carried by the Columbia River. This very low-level of Hanford derived U can be discerned, despite dilution to < 1 percent of natural background U, 350 km downstream from the Hanford Site. These results indicate that isotopic methods can allow the amounts of U from the 300 Area of the Hanford Site entering the Columbia River to be measured accurately to ascertain whether they are an environmental concern, or are insignificant relative to natural uranium background in the Columbia River

    Caltech Faint Galaxy Redshift Survey. XI. The Merger Rate to Redshift 1 from Kinematic Pairs

    Get PDF
    The rate of mass accumulation due to galaxy merging depends on the mass, density, and velocity distribution of galaxies in the near neighborhood of a host galaxy. The fractional luminosity in kinematic pairs combines all of these effects in a single estimator that is relatively insensitive to population evolution. Here we use a k-corrected and evolution-compensated volume-limited sample having an R-band absolute magnitude of M^(k,e)_R ≤ -19.8 + 5 log h mag drawing about 300 redshifts from the Caltech Faint Galaxy Redshift Survey and 3000 from the Canadian Network for Observational Cosmology field galaxy survey to measure the rate and redshift evolution of merging. The combined sample has an approximately constant comoving number and luminosity density from redshift 0.1 to 1.1 (Ω_M = 0.2, Ω_Λ = 0.8); hence, any merger evolution will be dominated by correlation and velocity evolution, not density evolution. We identify kinematic pairs with projected separations less than either 50 or 100 h^(-1) kpc and rest-frame velocity differences of less than 1000 km s^(-1). The fractional luminosity in pairs is modeled as f_L(Δv, r_p, M^(k,e)_τ)(1 + z)^(m,L), where [f_L, m_L] are [0.14 ± 0.07, 0 ± 1.4] and [0.37 ± 0.7, 0.1 ± 0.5] for r_p ≤ 50 and 100 h^(-1) kpc, respectively (Ω_M = 0.2, Ω_Λ = 0.8). The value of mL is about 0.6 larger if Λ = 0. To convert these redshift-space statistics to a merger rate, we use the data to derive a conversion factor to a physical space pair density, a merger probability, and a mean in-spiral time. The resulting mass accretion rate per galaxy (M_1, M_2 ≥ 0.2M*) is 0.02 ± 0.01(1 + z)^(0.1±0.5)M* Gyr^(-1). Present-day high-luminosity galaxies therefore have accreted approximately 0.15M* of their mass over the approximately 7 Gyr to redshift 1. Since merging is likely only weakly dependent on the host mass, the fractional effect, δM/M 0.15M*/M, is dramatic for lower mass galaxies but is, on the average, effectively perturbative for galaxies above 1M*

    Upper limits on the strength of periodic gravitational waves from PSR J1939+2134

    Get PDF
    The first science run of the LIGO and GEO gravitational wave detectors presented the opportunity to test methods of searching for gravitational waves from known pulsars. Here we present new direct upper limits on the strength of waves from the pulsar PSR J1939+2134 using two independent analysis methods, one in the frequency domain using frequentist statistics and one in the time domain using Bayesian inference. Both methods show that the strain amplitude at Earth from this pulsar is less than a few times 10−2210^{-22}.Comment: 7 pages, 1 figure, to appear in the Proceedings of the 5th Edoardo Amaldi Conference on Gravitational Waves, Tirrenia, Pisa, Italy, 6-11 July 200
    • …
    corecore