3,055 research outputs found
Permanent Superhumps in V1974 Cyg
We present results of 32 nights of CCD photometry of V1974 Cygni, from the
years 1994 and 1995. We verify the presence of two distinct periodicities in
the light curve: 0.0812585 day~1.95 hours and 0.0849767 d~2.04 hr. We establish
that the shorter periodicity is the orbital period of the underlying binary
system. The longer period oscillates with an average value of |dot(P)| ~
3x10^(7)--typical to permanent superhumps. The two periods obey the linear
relation between the orbital and superhump periods that holds among members of
the SU Ursae Majoris class of dwarf novae. A third periodicity of 0.083204
d~2.00 hr appeared in 1994 but not in 1995. It may be related to the recently
discovered anti-superhump phenomenon. These results suggest a linkage between
the classical nova V1974 Cyg and the SU UMa stars, and indicate the existence
of an accretion disk and permanent superhumps in the system no later than 30
months after the nova outburst. From the precessing disk model of the superhump
phenomenon we estimate that the mass ratio in the binary system is between 2.2
and 3.6. Combined with previous results this implies a white dwarf mass of
0.75-1.07 M sun.Comment: 11 pages, 10 eps. figures, Latex, accepted for publication in MNRA
Endothelin receptor B antagonists decrease glioma cell viability independently of their cognate receptor
Background:
Endothelin receptor antagonists inhibit the progression of many cancers, but research into their influence on glioma has been limited.
Methods:
We treated glioma cell lines, LN-229 and SW1088, and melanoma cell lines, A375 and WM35, with two endothelin receptor type B (ETRB)-specific antagonists, A-192621 and BQ788, and quantified viable cells by the capacity of their intracellular esterases to convert non-fluorescent calcein AM into green-fluorescent calcein. We assessed cell proliferation by labeling cells with carboxyfluorescein diacetate succinimidyl ester and quantifying the fluorescence by FACS analysis. We also examined the cell cycle status using BrdU/propidium iodide double staining and FACS analysis. We evaluated changes in gene expression by microarray analysis following treatment with A-192621 in glioma cells. We examined the role of ETRB by reducing its expression level using small interfering RNA (siRNA).
Results:
We report that two ETRB-specific antagonists, A-192621 and BQ788, reduce the number of viable cells in two glioma cell lines in a dose- and time-dependent manner. We describe similar results for two melanoma cell lines. The more potent of the two antagonists, A-192621, decreases the mean number of cell divisions at least in part by inducing a G2/M arrest and apoptosis. Microarray analysis of the effects of A-192621 treatment reveals up-regulation of several DNA damage-inducible genes. These results were confirmed by real-time RT-PCR. Importantly, reducing expression of ETRB with siRNAs does not abrogate the effects of either A-192621 or BQ788 in glioma or melanoma cells. Furthermore, BQ123, an endothelin receptor type A (ETRA)-specific antagonist, has no effect on cell viability in any of these cell lines, indicating that the ETRB-independent effects on cell viability exhibited by A-192621 and BQ788 are not a result of ETRA inhibition.
Conclusion:
While ETRB antagonists reduce the viability of glioma cells in vitro, it appears unlikely that this effect is mediated by ETRB inhibition or cross-reaction with ETRA. Instead, we present evidence that A-192621 affects glioma and melanoma viability by activating stress/DNA damage response pathways, which leads to cell cycle arrest and apoptosis. This is the first evidence linking ETRB antagonist treatment to enhanced expression of DNA damage-inducible genes
Size and shape constancy in consumer virtual reality
With the increase in popularity of consumer virtual reality headsets, for research and other applications, it is important to understand the accuracy of 3D perception in VR. We investigated the perceptual accuracy of near-field virtual distances using a size and shape constancy task, in two commercially available devices. Participants wore either the HTC Vive or the Oculus Rift and adjusted the size of a virtual stimulus to match the geometric qualities (size and depth) of a physical stimulus they were able to refer to haptically. The judgments participants made allowed for an indirect measure of their perception of the egocentric, virtual distance to the stimuli. The data show under-constancy and are consistent with research from carefully calibrated psychophysical techniques. There was no difference in the degree of constancy found in the two headsets. We conclude that consumer virtual reality headsets provide a sufficiently high degree of accuracy in distance perception, to allow them to be used confidently in future experimental vision science, and other research applications in psychology
Analysis of factors influencing the ultrasonic fetal weight estimation
Objective: The aim of our study was the evaluation of sonographic fetal weight estimation taking into consideration 9 of the most important factors of influence on the precision of the estimation. Methods: We analyzed 820 singleton pregnancies from 22 to 42 weeks of gestational age. We evaluated 9 different factors that potentially influence the precision of sonographic weight estimation ( time interval between estimation and delivery, experts vs. less experienced investigator, fetal gender, gestational age, fetal weight, maternal BMI, amniotic fluid index, presentation of the fetus, location of the placenta). Finally, we compared the results of the fetal weight estimation of the fetuses with poor scanning conditions to those presenting good scanning conditions. Results: Of the 9 evaluated factors that may influence accuracy of fetal weight estimation, only a short interval between sonographic weight estimation and delivery (0-7 vs. 8-14 days) had a statistically significant impact. Conclusion: Of all known factors of influence, only a time interval of more than 7 days between estimation and delivery had a negative impact on the estimation
Laser cooling of a diatomic molecule
It has been roughly three decades since laser cooling techniques produced
ultracold atoms, leading to rapid advances in a vast array of fields.
Unfortunately laser cooling has not yet been extended to molecules because of
their complex internal structure. However, this complexity makes molecules
potentially useful for many applications. For example, heteronuclear molecules
possess permanent electric dipole moments which lead to long-range, tunable,
anisotropic dipole-dipole interactions. The combination of the dipole-dipole
interaction and the precise control over molecular degrees of freedom possible
at ultracold temperatures make ultracold molecules attractive candidates for
use in quantum simulation of condensed matter systems and quantum computation.
Also ultracold molecules may provide unique opportunities for studying chemical
dynamics and for tests of fundamental symmetries. Here we experimentally
demonstrate laser cooling of the molecule strontium monofluoride (SrF). Using
an optical cycling scheme requiring only three lasers, we have observed both
Sisyphus and Doppler cooling forces which have substantially reduced the
transverse temperature of a SrF molecular beam. Currently the only technique
for producing ultracold molecules is by binding together ultracold alkali atoms
through Feshbach resonance or photoassociation. By contrast, different proposed
applications for ultracold molecules require a variety of molecular
energy-level structures. Our method provides a new route to ultracold
temperatures for molecules. In particular it bridges the gap between ultracold
temperatures and the ~1 K temperatures attainable with directly cooled
molecules (e.g. cryogenic buffer gas cooling or decelerated supersonic beams).
Ultimately our technique should enable the production of large samples of
molecules at ultracold temperatures for species that are chemically distinct
from bialkalis.Comment: 10 pages, 7 figure
In situ grazing on plankton \u3c10 mu m by the boreal sponge Mycale lingua
Ultraplankton, heterotrophic and autotrophic plankton \u3c 5 mu m, are the most abundant food source in the world\u27s oceans, yet their role as a food source for macroinvertebrates is largely unexamined. We quantified in situ feeding on heterotrophic and autotrophic plankton \u3c 10 mu m by the boreal sponge Mycale lingua using measurements that quantified sponge feeding efficiencies, pumping rates, and abundance to determine the contribution of plankton \u3c 10 mu m to sponge carbon intake. Using dual-beam now cytometry we identified 5 populations of plankton \u3c 10 mu m: heterotrophic bacteria, Prochlorococcus, Synechococcus-type cyanobacteria, autotrophic eucaryotes \u3c 3 mu m, and autotrophic eucaryotes 3 to 10 mu m Mycale lingua nonselectively grazed on all types of plankton \u3c 10 mu m. Prochlorococcus was filtered with the highest efficiency (93%), followed by Synechococcus-type cyanobacteria (89%), autotrophic eucaryotes 3 to 10 mu m (86%), heterotrophic bacteria (74%), and autotrophic eucaryotes \u3c 3 mu m (72%). We conservatively estimate that M. lingua al naturally occurring densities can obtain 29 mg C d(-1) m(-2) feeding on plankton \u3c 10 mu m, with 74% resulting from ultraplankton, suggesting that ultraplankton are an important overlooked component of benthic-pelagic coupling
Establishing the precise evolutionary history of a gene improves prediction of disease-causing missense mutations
PURPOSE: Predicting the phenotypic effects of mutations has become an important application in clinical genetic diagnostics. Computational tools evaluate the behavior of the variant over evolutionary time and assume that variations seen during the course of evolution are probably benign in humans. However, current tools do not take into account orthologous/paralogous relationships. Paralogs have dramatically different roles in Mendelian diseases. For example, whereas inactivating mutations in the NPC1 gene cause the neurodegenerative disorder Niemann-Pick C, inactivating mutations in its paralog NPC1L1 are not disease-causing and, moreover, are implicated in protection from coronary heart disease. METHODS: We identified major events in NPC1 evolution and revealed and compared orthologs and paralogs of the human NPC1 gene through phylogenetic and protein sequence analyses. We predicted whether an amino acid substitution affects protein function by reducing the organism’s fitness. RESULTS: Removing the paralogs and distant homologs improved the overall performance of categorizing disease-causing and benign amino acid substitutions. CONCLUSION: The results show that a thorough evolutionary analysis followed by identification of orthologs improves the accuracy in predicting disease-causing missense mutations. We anticipate that this approach will be used as a reference in the interpretation of variants in other genetic diseases as well. Genet Med 18 10, 1029–1036
Gene expression and matrix turnover in overused and damaged tendons
Chronic, painful conditions affecting tendons, frequently known as tendinopathy, are very common types of sporting injury. The tendon extracellular matrix is substantially altered in tendinopathy, and these changes are thought to precede and underlie the clinical condition. The tendon cell response to repeated minor injuries or “overuse” is thought to be a major factor in the development of tendinopathy. Changes in matrix turnover may also be effected by the cellular response to physical load, altering the balance of matrix turnover and changing the structure and composition of the tendon. Matrix turnover is relatively high in tendons exposed to high mechanical demands, such as the supraspinatus and Achilles, and this is thought to represent either a repair or tissue maintenance function. Metalloproteinases are a large family of enzymes capable of degrading all of the tendon matrix components, and these are thought to play a major role in the degradation of matrix during development, adaptation and repair. It is proposed that some metalloproteinase enzymes are required for the health of the tendon, and others may be damaging, leading to degeneration of the tissue. Further research is required to investigate how these enzyme activities are regulated in tendon and altered in tendinopathy. A profile of all the metalloproteinases expressed and active in healthy and degenerate tendon is required and may lead to the development of new drug therapies for these common and debilitating sports injuries
Determining the neurotransmitter concentration profile at active synapses
Establishing the temporal and concentration profiles of neurotransmitters during synaptic release is an essential step towards understanding the basic properties of inter-neuronal communication in the central nervous system. A variety of ingenious attempts has been made to gain insights into this process, but the general inaccessibility of central synapses, intrinsic limitations of the techniques used, and natural variety of different synaptic environments have hindered a comprehensive description of this fundamental phenomenon. Here, we describe a number of experimental and theoretical findings that has been instrumental for advancing our knowledge of various features of neurotransmitter release, as well as newly developed tools that could overcome some limits of traditional pharmacological approaches and bring new impetus to the description of the complex mechanisms of synaptic transmission
- …
