20,612 research outputs found

    On the beneficial role of noise in resistive switching

    Get PDF
    We study the effect of external noise on resistive switching. Experimental results on a manganite sample are presented showing that there is an optimal noise amplitude that maximizes the contrast between high and low resistive states. By means of numerical simulations, we study the causes underlying the observed behavior. We find that experimental results can be related to general characteristics of the equations governing the system dynamics.Comment: 4 pages, 5 figure

    Investigation of powered nacelles on a high aspect ratio NASA supercritical wing, phase 2

    Get PDF
    A modified wing with the long core separate flow nacelle and several E(3) nacelles was utilized. The effects of nacelle and pylon cant angles and nacelle longitudinal and vertical location were investigated over a Mach number range from 0.70 to 0.83. The results at the cruise condition 0.82 Mach number and 0.55 lift coefficient are presented

    Experiment K-6-04. Trace element balance in rats during spaceflight

    Get PDF
    Exposure to microgravity causes alterations in the skeletal and mineral homeostatic systems. Little is known about the effects of flight in an older skeleton; limited data suggest that bone resorption is increased after 5 days but no data are available about other metabolic effects. The response of a more slowly-growing skeleton to microgravity may be different than that of a younger animal, similar to the different responses seen in adolescents and adult humans to immobilization. This experiment was designed to investigate changes occurring in skeletal and mineral homeostatis in these older rats flown for two weeks in space. We may expect that the two portions of the rat vertebra, the vertebral body and the posterior elements, will show different responses to spaceflight. The results of the analyses from this study confirm major differences between portions of the vertebra. The posterior bone is more highly mineralized, evidenced by increased concentration (per unit weight of bone) of calcium (5 percent), phosphorus (6 percent) and osteocalcin (37 percent), similar to the differences seen between proximal and mid humerus in previous studies. The major increase in osteocalcin content indicates the presence of mature, low-turnover bone. The difference between flight and control animals were minimal in these older, slower-growing rats. Mass of whole vertebrae increased 6.2 percent in synchronous rats compared to less than 2 percent in flight rats over the 16 days when compared to basal controls, suggesting a decreased rate of bone growth in flight. Compared to young rats in which vertebral mass increased over 40 percent in 10 days in controls and 20 percent in flight rats, this may be a clear indication that even in the older skeleton bone growth will slow in microgravity

    Development of global model for atmospheric backscatter at CO2 wavelengths

    Get PDF
    The improvement of an understanding of the variation of the aerosol backscattering at 10.6 micron within the free troposphere and the development model to describe this was undertaken. The analysis combines theoretical modeling with the results contained within three independent data sets. The data sets are obtained by the SAGE I/SAM II satellite experiments, the GAMETAG flight series and by direct backscatter measurements. The theoretical work includes use of a bimodal, two component aerosol model, and the study of the microphysical and associated optical changes occurring within an aerosol plume. A consistent picture is obtained, which describes the variation of the aerosol backscattering function in the free troposphere with altitude, latitude, and season. Most data are available and greatest consistency is found inside the Northern Hemisphere

    Development of a global model for atmospheric backscatter at CO2 wavelengths

    Get PDF
    The variation of the aerosol backscattering at 10.6 micrometers within the free troposphere was investigated and a model to describe this variation was developed. The analysis combines theoretical modeling with the results contained within three independent data sets. The data sets used were obtained by the SAGE I/SAM II satellite experiments, the GAMETAG flight series, and by direct backscatter measurements. The theoretical work includes use of a bimodal, two component aerosol model, and the study of the microphysical and associated optical changes occurring within an aerosol plume. A consistent picture is obtained that describes the variation of the aerosol backscattering function in the free troposphere with altitude, latitude, and season

    HALOGAS observations of NGC 5023 and UGC 2082: Modeling of non-cylindrically symmetric gas distributions in edge-on galaxies

    Get PDF
    In recent years it has become clear that the vertical structure of disk galaxies is a key ingredient for understanding galaxy evolution. In particular, the presence and structure of extra-planar gas has been a focus of research. The Hydrogen Accretion in LOcal GAlaxieS (HALOGAS) survey aims to provide a census on the rate of cold neutral gas accretion in nearby galaxies as well as a statistically significant set of galaxies that can be investigated for their extra-planar gas properties. In order to better understand the the vertical structure of the neutral hydrogen in the two edge-on HALOGAS galaxies NGC 5023 and UGC 2082 we construct detailed tilted ring models. The addition of distortions resembling arcs or spiral arms significantly improves the fit of the models to these galaxies. In the case of UGC 2082 no vertical gradient in rotational velocity is required in either symmetric models nor non-symmetric models to match the observations. The best fitting model features two arcs of large vertical extent that may be due to accretion. In the case of NGC 5023 a vertical gradient is required in symmetric models (dV/dz =−14.9±3.8-14.9\pm3.8 km s−1^{-1} kpc−1^{-1}) and its magnitude is significantly lowered when non-symmetric models are considered (dV/dz =−9.4±3.8-9.4\pm3.8 km s−1^{-1} kpc−1^{-1}). Additionally it is shown that the underlying disk of NGC 5023 can be made symmetric, in all parameters except the warp, in non-symmetric models. In comparison to the "classical" modeling these models fit the data significantly better with a limited addition of free parameters.Comment: 27 Pages, 22 Figures. Accepted for publication in MNRA
    • …
    corecore