22,063 research outputs found

    On the beneficial role of noise in resistive switching

    Get PDF
    We study the effect of external noise on resistive switching. Experimental results on a manganite sample are presented showing that there is an optimal noise amplitude that maximizes the contrast between high and low resistive states. By means of numerical simulations, we study the causes underlying the observed behavior. We find that experimental results can be related to general characteristics of the equations governing the system dynamics.Comment: 4 pages, 5 figure

    A fiber-optic current sensor for aerospace applications

    Get PDF
    A robust, accurate, broad-band, alternating current sensor using fiber optics is being developed for space applications at power frequencies as high as 20 kHz. It can also be used in low and high voltage 60 Hz terrestrial power systems and in 400 Hz aircraft systems. It is intrinsically electromagnetic interference (EMI) immune and has the added benefit of excellent isolation. The sensor uses the Faraday effect in optical fiber and standard polarimetric measurements to sense electrical current. The primary component of the sensor is a specially treated coil of single-mode optical fiber, through which the current carrying conductor passes. Improved precision is accomplished by temperature compensation by means of signals from a novel fiber-optic temperature sensor embedded in the sensing head. The technology contained in the sensor is examined and the results of precision tests conducted at various temperatures within the wide operating range are given. The results of early EMI tests are also given

    Fiber-optic sensors for aerospace electrical measurements: An update

    Get PDF
    Fiber-optic sensors are being developed for electrical current, voltage, and power measurements in aerospace applications. These sensors are presently designed to cover ac frequencies from 60 Hz to 20 kHz. The current sensor, based on the Faraday effect in optical fiber, is in advanced development after some initial testing. Concentration is on packaging methods and ways to maintain consistent sensitivity with changes in temperature. The voltage sensor, utilizing the Pockels effect in a crystal, has excelled in temperature tests. This paper reports on the development of these sensors, the results of evaluation, improvements now in progress, and the future direction of the work

    Search for the electric dipole moment of the electron with thorium monoxide

    Get PDF
    The electric dipole moment of the electron (eEDM) is a signature of CP-violating physics beyond the Standard Model. We describe an ongoing experiment to measure or set improved limits to the eEDM, using a cold beam of thorium monoxide (ThO) molecules. The metastable H3Δ1H {}^3\Delta_1 state in ThO has important advantages for such an experiment. We argue that the statistical uncertainty of an eEDM measurement could be improved by as much as 3 orders of magnitude compared to the current experimental limit, in a first-generation apparatus using a cold ThO beam. We describe our measurements of the HH state lifetime and the production of ThO molecules in a beam, which provide crucial data for the eEDM sensitivity estimate. ThO also has ideal properties for the rejection of a number of known systematic errors; these properties and their implications are described.Comment: v2: Equation (11) correcte

    Search for Lorentz Invariance and CPT Violation with the MINOS Far Detector

    Get PDF
    We searched for a sidereal modulation in the MINOS far detector neutrino rate. Such a signal would be a consequence of Lorentz and CPT violation as described by the standard-model extension framework. It also would be the first detection of a perturbative effect to conventional neutrino mass oscillations. We found no evidence for this sidereal signature, and the upper limits placed on the magnitudes of the Lorentz and CPT violating coefficients describing the theory are an improvement by factors of 20–510 over the current best limits found by using the MINOS near detector

    Improved Measurement of Muon Antineutrino Disappearance in MINOS

    Get PDF
    We report an improved measurement of ν̅_μ disappearance over a distance of 735 km using the MINOS detectors and the Fermilab Main Injector neutrino beam in a ν̅_μ-enhanced configuration. From a total exposure of 2.95×10^20 protons on target, of which 42% have not been previously analyzed, we make the most precise measurement of Δm̅^2=[2.62_(-0.28)^(+0.31)(stat)±0.09(syst)]×10^(-3)  eV^2 and constrain the ν_μ mixing angle sin^(2)(2θ̅)>0.75 (90% C.L.). These values are in agreement with Δm^2 and sin^(2)(2θ) measured for νμ, removing the tension reported in [ P. Adamson et al. Phys. Rev. Lett. 107 021801 (2011)]

    Optical Range Finder

    Get PDF
    Recently, a great deal of interest has been shown in making accurate range measurements with good transverse definition. This capability makes it possible, in machine vision systems, to extract geometrical shape information from the images. In robot position sensing, it is important to determine the absolute distance instead of distance change so that noncontinuous measurements can be made without the need for calibration at start-up. A third application of great importance is to measure the shape and size of machined parts with a noncontacting sensor
    • …
    corecore