4 research outputs found
Controls on the spatio-temporal distribution of microbialite crusts on the Great Barrier Reef over the past 30,000 years
Calcification of microbial mats adds significant amounts of calcium carbonate to primary coral reef structures that stabilizes and binds reef frameworks. Previous studies have shown that the distribution and thicknesses of late Quaternary microbial crusts have responded to changes in environmental parameters such as seawater pH, carbonate saturation state, and sediment and nutrient fluxes. However, these studies are few and limited in their spatio-temporal coverage. In this study, we used 3D and 2D examination techniques to investigate the spatio-temporal distribution of microbial crusts and their responses to environmental changes in Integrated Ocean Drilling Program (IODP) Expedition 325 (Great Barrier Reef Environmental Changes) fossil reef cores that span 30 to 10 ka at two locations on the GBR reef margin. Our GBR microbialite record was then combined with a meta-analysis of 17 other reef records to assess global scale changes in microbialite development (i.e., presence/absence, thickness) over the same period. The 3D results were compared with 2D surface area measurements to assess the accuracy of 2D methodology. The 2D technique represents an efficient and accurate proxy for the 3D volume of reef framework components within the bounds of uncertainty (average: 9.45 ± 4.5%). We found that deep water reef frameworks were most suitable for abundant microbial crust development. Consistent with a previous Exp. 325 study (Braga et al., 2019), we also found that crust ages were broadly coeval with coralgal communities in both shallow water and fore-reef settings. However, in some shallow water settings they also occur as the last reef framework binding stage, hundreds of years after the demise of coralgal communities. Lastly, comparisons of crust thickness with changes in environmental conditions between 30 and 10 ka, show a temporal correlation with variations in partial pressure of CO2 (pCO2), calcite saturation state (Ωcalcite), and pH of seawater, particularly during the past ~15 kyr, indicating that these environmental factors likely played a major role in microbialite crust development in the GBR. This supports the view that microbialite crust development can be used as an indicator of ocean acidification
A new model of Holocene reef initiation and growth in response to sea-level rise on the Southern Great Barrier Reef
The fossil record provides valuable data for improving our understanding of both past and future reef resilience and vulnerability to environmental change. The spatial and temporal pattern of the initiation of the Holocene Great Barrier Reef presents a case study of reef response to rapid sea-level rise. Past studies have been limited by the lack of well-dated and closely spaced reef core transects and have not closely examined the composition of the reef-building communities through time. This study presents 80 new high precision U[sbnd]Th and 5 radiocarbon ages from twelve new cores located along three transects across different geomorphic and hydrodynamic settings of One Tree Reef, southern Great Barrier Reef, to document three distinct stages of Holocene reef development in unprecedented detail. Temporal constraints on changing paleoecological assemblages of coral, coralline algae and associated biota revealed three distinct phases of reef development, consisting of: 1)a fast, shallow and clear-water reef initiation from 8.2 until 8 ka; 2)a shift to slower, deeper and more turbid-water reef growth from 8 to 7 ka; and 3)a return to shallow and rapid branching coral growth in clear-water conditions as the reef “catches up” to sea-level. A minimum lag prior to reef initiation of 700 years was identified, which differs in length depending on reef environment and Pleistocene substrate height. In this new model, reef growth initiated on the topographically lower leeward margin and patch reef, prior to the start of windward margin development, contrary to the traditional reef growth model. While there was a shift to conditions less favorable for reef growth at 8 ka, this did not prevent the slow accretion of more sediment-tolerant coral communities. The majority of the reef reached sea level by ~6 ka. This new conceptual model of Holocene reef growth provides new constraints on changes in paleoenvironment that controlled reef community composition and growth trajectories through sea-level rise following inundation
Serdemetan Antagonizes the Mdm2-HIF1α Axis Leading to Decreased Levels of Glycolytic Enzymes
Serdemetan (JNJ-26854165), an antagonist to Mdm2, was anticipated to promote the activation of p53. While regulation of p53 by Mdm2 is important, Mdm2 also regulates numerous proteins involved in diverse cellular functions. We investigated if Serdemetan would alter the Mdm2-HIF1α axis and affect cell survival in human glioblastoma cells independently of p53. Treatment of cells with Serdemetan under hypoxia resulted in a decrease in HIF1α levels. HIF1α downstream targets, VEGF and the glycolytic enzymes (enolase, phosphoglycerate kinase1/2, and glucose transporter 1), were all decreased in response to Serdemetan. The involvement of Mdm2 in regulating gene expression of glycolytic enzymes raises the possibility of side effects associated with therapeutically targeting Mdm2