20,059 research outputs found

    The NASA supercritical-wing technology

    Get PDF
    A number of high aspect ratio supercritical wings in combination with a representative wide body type fuselage were tested in the Langley 8 foot transonic pressure tunnel. The wing parameters investigated include aspect ratio, sweep, thickness to chord ratio, and camber. Subsequent to these initial series of tests, a particular wing configuration was selected for further study and development. Tests on the selected wing involved the incorporation of a larger inboard trailing edge extension, an inboard leading edge extension, and flow through nacelles. Range factors for the various supercritical wing configurations are compared with those for a reference wide body transport configuration

    Shoreward sand transport outside the surfzone, Northern Gold Coast, Australia

    Get PDF
    To date, no suitable theoretical basis has been derived to predict with reliable accuracy the shoreward sand transport under waves in the deeper water outside the surf zone. This is important for understanding the rate of recovery of beaches after major storm erosion and, in some circumstances, to quantify net shoreward supply of sand to the shoreline from the active lower shore-face below the depth of storm erosion bar development. Even a relatively low rate of long term shoreward net supply may contribute to shoreline stability where it offsets a gradient in the longshore sand transport that would otherwise lead to recession. This paper outlines the results of analysis of a 41 year dataset of beach and nearshore profile surveys to quantify annual average rates of shoreward net sand transport in 6-20m water in an area where the profiles are not in equilibrium due to the existence of a residual river mouth ebb delta bar lobe. Additionally, an empirical adaptation of the sheet flow relationship of Ribberink and Al-Salem (1990) to provide for the effects of ripples has been derived from large wave flume data and correlates well with the measured Gold Coast transport rates. These have been applied to a new coastline modelling system developed as part of research into the long term evolution of Australia's central east coast region in response to sea level change and longshore sand transport processes, which combines the one-line concept of shoreline profile translation within the zone of littoral sand transport with cross-shore profile evolution across the deeper shore-face profile below that zone. It demonstrates the importance of providing for both the shoreward supply from the continental shelf and the varying profile response time-scale across the shore-face in predicting shoreline evolution

    Feedback in a cavity QED system for control of quantum beats

    Full text link
    Conditional measurements on the undriven mode of a two-mode cavity QED system prepare a coherent superposition of ground states which generate quantum beats. The continuous system drive induces decoherence through the phase interruptions from Rayleigh scattering, which manifests as a decrease of the beat amplitude and an increase of the frequency of oscillation. We report recent experiments that implement a simple feedback mechanism to protect the quantum beat. We continuously drive the system until a photon is detected, heralding the presence of a coherent superposition. We then turn off the drive and let the superposition evolve in the dark, protecting it against decoherence. At a later time we reinstate the drive to measure the amplitude, phase, and frequency of the beats. The amplitude can increase by more than fifty percent, while the frequency is unchanged by the feedback.Comment: 13 pages, 5 figures, ICAP 2012 23rd International Conference on Atomic Physic

    Search for the electric dipole moment of the electron with thorium monoxide

    Get PDF
    The electric dipole moment of the electron (eEDM) is a signature of CP-violating physics beyond the Standard Model. We describe an ongoing experiment to measure or set improved limits to the eEDM, using a cold beam of thorium monoxide (ThO) molecules. The metastable H3Δ1H {}^3\Delta_1 state in ThO has important advantages for such an experiment. We argue that the statistical uncertainty of an eEDM measurement could be improved by as much as 3 orders of magnitude compared to the current experimental limit, in a first-generation apparatus using a cold ThO beam. We describe our measurements of the HH state lifetime and the production of ThO molecules in a beam, which provide crucial data for the eEDM sensitivity estimate. ThO also has ideal properties for the rejection of a number of known systematic errors; these properties and their implications are described.Comment: v2: Equation (11) correcte

    A study of the thermal degradation of an amine-cured epoxide resin at temperatures below 350 degrees C

    Get PDF
    An epoxy resin made by the reaction of the diglycidyl ether of bis-phenol A and diaminodiphenyl methane was thermally degraded in vacuo at temperatures between 200°C and 350°C. The effect of degradation was examined by means of measurement of changes in the dielectric properties of the material and also by examination of compounds evolved by the cured resin. Definite evidence for the evolution of N-methyl aniline and N:N-dimethylaniline is advanced and added evidence for a dehydration reaction is put forward. Possible degradation mechanisms are discussed

    Using binary stars to bound the mass of the graviton

    Get PDF
    Interacting white dwarf binary star systems, including helium cataclysmic variable (HeCV) systems, are expected to be strong sources of gravitational radiation, and should be detectable by proposed space-based laser interferometer gravitational wave observatories such as LISA. Several HeCV star systems are presently known and can be studied optically, which will allow electromagnetic and gravitational wave observations to be correlated. Comparisons of the phases of a gravitational wave signal and the orbital light curve from an interacting binary white dwarf star system can be used to bound the mass of the graviton. Observations of typical HeCV systems by LISA could potentially yield an upper bound on the inverse mass of the graviton as strong as h/mg=λg>1×1015h/m_{g} = \lambda_{g} > 1 \times 10^{15} km (mg<1×1024m_{g} < 1 \times 10^{-24} eV), more than two orders of magnitude better than present solar system derived bounds.Comment: 21 pages plus 4 figures; ReVTe

    Hypercube technology

    Get PDF
    The JPL designed MARKIII hypercube supercomputer has been in application service since June 1988 and has had successful application to a broad problem set including electromagnetic scattering, discrete event simulation, plasma transport, matrix algorithms, neural network simulation, image processing, and graphics. Currently, problems that are not homogeneous are being attempted, and, through this involvement with real world applications, the software is evolving to handle the heterogeneous class problems efficiently
    corecore